洛谷P3246 [HNOI2016]序列
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
void print(ll x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+,inf=0x3f3f3f3f;
int n,m,top,bin[],f[N][],a[N],Pre[N],suf[N],s[N],log[N];ll fl[N],fr[N],gl[N],gr[N];
inline int cmp(int x,int y){return a[x]<a[y]?x:y;}
inline int query(int l,int r){int k=log[r-l+];return cmp(f[l][k],f[r-bin[k]+][k]);}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),a[n+]=a[]=inf;
bin[]=;for(int i=;i<=;++i) bin[i]=bin[i-]<<;
for(int i=;i<=n;++i) log[i]=log[i>>]+;
for(int i=;i<=n;++i) a[i]=read(),f[i][]=i;
for(int j=;j<=log[n];++j) for(int i=;i<=n-bin[j-]+;++i)
f[i][j]=cmp(f[i][j-],f[i+bin[j-]][j-]);
for(int i=;i<=n;++i){
while(top&&a[s[top]]>a[i]) suf[s[top--]]=i;
Pre[i]=s[top],s[++top]=i;
}while(top) Pre[s[top]]=s[top-],suf[s[top--]]=n+;
for(int i=;i<=n;++i) fr[i]=(ll)a[i]*(i-Pre[i])+fr[Pre[i]],gr[i]=gr[i-]+fr[i];
for(int i=n;i;--i) fl[i]=(ll)a[i]*(suf[i]-i)+fl[suf[i]],gl[i]=gl[i+]+fl[i];
while(m--){
int l=read(),r=read(),p=query(l,r);
print((ll)(p-l+)*(r-p+)*a[p]+
gr[r]-gr[p]-fr[p]*(r-p)+
gl[l]-gl[p]-fl[p]*(p-l));
}
return Ot(),;
}
洛谷P3246 [HNOI2016]序列的更多相关文章
- 洛谷 P3246 - [HNOI2016]序列(单调栈+前缀和)
题面传送门 这道题为什么我就没想出来呢/kk 对于每组询问 \([l,r]\),我们首先求出区间 \([l,r]\) 中最小值的位置 \(x\),这个可以用 ST 表实现 \(\mathcal O(n ...
- 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...
- 洛谷P3246 [HNOI2016]序列 [莫队]
传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \ ...
- 洛谷 P1628 合并序列
洛谷 P1628 合并序列 题目传送门 题目描述 有N个单词和字符串T,按字典序输出以字符串T为前缀的所有单词. 输入格式 输入文件第一行包含一个正整数N: 接下来N行,每行一个单词,长度不超过100 ...
- 洛谷 P5470 - [NOI2019] 序列(反悔贪心)
洛谷题面传送门 好几天没写题解了,写篇题解意思一下(大雾 考虑反悔贪心,首先我们考虑取出 \(a,b\) 序列中最大的 \(k\) 个数,但这样并不一定满足交集 \(\ge L\) 的限制,因此我们需 ...
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- BZOJ 1500 洛谷2042维护序列题解
BZ链接 洛谷链接 这道题真是丧心病狂.... 应该很容易就可以看出做法,但是写代码写的....... 思路很简单,用一个平衡树维护一下所有的操作就好了,重点讲解一下代码的细节 首先如果按照常规写法的 ...
- 洛谷 P4272 - [CTSC2009]序列变换(堆)
洛谷题面传送门 u1s1 在我完成这篇题解之前,全网总共两篇题解,一篇使用的平衡树,一篇使用的就是这篇题解讲解的这个做法,但特判掉了一个点,把特判去掉在 BZOJ 上会 WA 一个点. 两篇题解都异常 ...
- 洛谷P3246 序列 [HNOI2016] 莫队/线段树+扫描线
正解:莫队/线段树+扫描线 解题报告: 传送门! 似乎是有两种方法的,,,所以分别港下好了QAQ 第一种,莫队 看到这种询问很多区间之类的就会自然而然地想到莫队趴?然后仔细思考一下,发现复杂度似乎是欧 ...
随机推荐
- IText 生成pdf,处理table cell列跨页缺失的问题
/** * 创建(table)PDF,处理cell 跨页处理 * @param savePath(需要保存的pdf路径) * @param pmbs (数据库查询的数据) ...
- 洛谷——P1551 亲戚
题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描述 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚.如 ...
- MySQL中的数据类型的长度范围和显示宽度(转)
长度范围是随数据类型就已经是固定的值,而显示宽度与长度范围无关. 以下是每个整数类型的存储和范围(来自MySQL手册) 类型 字节 最小值 最大值 (带符号的/无符号的) (带符号的/无符号的) TI ...
- sql server2008 R2 各个版本的区别与选择
目前已知的SQL Server 2008 R2的版本有: 企业版.标准版.工作组版.Web版.开发者版.Express版.Compact 3.5版. 这个次序也是各个版本功能的强大程度从高到低的一个排 ...
- Mark 创建路径(c#)-动态分段
http://bbs.esrichina-bj.cn/ESRI/viewthread.php?action=printable&tid=128564 public void CreateRou ...
- 盘点UML中的四种关系
生活中,我们既是独立的个体,又通过联系形成各种关系,比方说:朋友.恋人.父子,同学--于是乎,出现了神乎其神的六人定律. 那么在UML中又存在什么样的关系呢?以下我们来梳理一下. 关联(Associa ...
- 【问题记录】LoadRunner 接口压测-json格式报文
[问题起因] 前段时间,协助其他项目录制接口压测脚本,对方要求请求报文内容实现参数化. 请求方法如下: 直接在Parameter List中新增一个parameter, 将请求报文放入dat文件中.这 ...
- int&boolean——Java和C的一点小差别
Java和C的差别非常多.只是预计这一点非常多人都不知道. 今天面试时碰到这么道C语言题 求执行结果 int x = -1; while(!x!=0){ cout<<x<<en ...
- poj2488--A Knight's Journey(dfs,骑士问题)
A Knight's Journey Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 31147 Accepted: 10 ...
- Openstack-Ceilometer-获取主机内存 的使用
1. 物理server配置 1.1安装 參考 http://blog.csdn.net/qq_21398167/article/details/47019751 1.2 配置 关闭selin ...