大概是对于f(x,y)求min,先把x看成常数,然后得到关于y的一元二次方程,然后取一元二次极值把y用x表示,再把x作为未知数带回去化简,最后能得到一个一元二次的式子,每次修改这个式子的参数即可。

智商欠费解释不清,详见Claris大神 http://www.cnblogs.com/clrs97/p/4403197.html

#include<cstdio>
#include<cmath>
using namespace std;
const int N=120005;
int n,q,op,i,m;
double X1,X2,Y1,Y2,a,b,c,d,aa[N],bb[N],cc[N],ab[N],ac[N],bc[N],saa,sbb,scc,sab,sac,sbc,eps=1e-8,ans;
inline bool cmp(double x)
{
return fabs(x)<eps;
}
inline double solve(double a,double b,double c)
{
if(cmp(a))
return c;
double x=-b/(2.0*a);
return a*x*x+b*x+c;
}
int main()
{
scanf("%d",&q);
while(q--)
{
scanf("%d",&op);
if(op==0)
{
scanf("%lf%lf%lf%lf",&X1,&Y1,&X2,&Y2);
if(cmp(X1-X2))
a=1,b=0,c=-X1;
else
a=(Y2-Y1)/(X2-X1),b=-1,c=Y1-a*X1;
d=a*a+b*b;
aa[++n]=a*a/d,bb[n]=b*b/d,cc[n]=c*c/d,ab[n]=a*b/d,ac[n]=a*c/d,bc[n]=b*c/d;
saa+=aa[n],sbb+=bb[n],scc+=cc[n],sab+=ab[n],sac+=ac[n],sbc+=bc[n];
m++;
}
if(op==1)
{
scanf("%d",&i);
saa-=aa[i],sbb-=bb[i],scc-=cc[i],sab-=ab[i],sac-=ac[i],sbc-=bc[i];
m--;
}
if(op==2)
{
if(!m)
{
puts("0.00");
continue;
}
if(cmp(sbb))
a=b=0;
else
a=-sab/sbb,b=-sbc/sbb;
ans=solve(saa+2.0*a*sab+a*a*sbb,2.0*(b*sab+sac+a*b*sbb+a*sbc),b*b*sbb+2.0*b*sbc+scc);
if(cmp(ans))
ans=0;
printf("%.2f\n",ans);
}
}
return 0;
}

bzoj 2508: 简单题【拉格朗日乘数法】的更多相关文章

  1. BZOJ 2508: 简单题

    题目大意: 加入直线,删除直线,求点到所有直线的距离的平方和. 题解: 把点到直线的距离公式写出来,然后展开.维护六个值,计算一个二元的多项式的最小值. 对x和y分别求导,导数都为零时取到极值.然后解 ...

  2. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  3. [Math & Algorithm] 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  4. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  5. CodeChef TWOROADS(计算几何+拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  6. BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  7. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  8. CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)

    [传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得  xa yb zc值最大的实数 x,y,z , 其中x ...

  9. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

随机推荐

  1. Dividing--hdu1059(动态规划)

    Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...

  2. dubbo-admin安装和使用

    更新下链接,不知道是不是这个项目合入Apache的缘故,链接都变成了https://github.com/apache/incubator-dubbo/ 按照常理,直接去 https://github ...

  3. 百亿级企业级 RPC 框架开源了!

    今天给大家介绍给一款性能卓越的 RPC 开源框架,其作者就是我推荐每个 Java 程序员都应该看的<Java 生态核心知识点整理>的原作者张玉龙. 说实话我第一次看到这个资料的时候,就感觉 ...

  4. idea、jdk、eclispe中空main方法的线程数量不一样,why?

    測试代码: public class Test {     public static void main(String[] args) {         System.out.println(Th ...

  5. Redis 命令行 常用总结

    http://www.redis.cn/commands.html# 1 Keys * 列出所有的keys redis > keys * ) "s:0" ) "o: ...

  6. 【Mongodb教程 第一课 】 MongoDB下载安装

    MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种.它在许多场景下可用于替代传统的关系型数据库或键/值存储方式.Mongo使用C++开发.以window平台 ...

  7. Centos 6.4 实际工作环境搭建(LNMP)

    基本配置 服务器IP设置.编辑网卡配置文件,命令: vi /etc/sysconfig/network-scripts/ifcfg-eth0 注:ifcfg-eth0参数  TYPE=Ethernet ...

  8. Sql sever 分组排序

    维护人事的时候人事局要求加入一个新功能,详细需求例如以下:加入的人员在同一个单位的依照顺序编号而且单位也要实现时间排序,也就是说有两个排序,第一单位名称排序.先创建的一直在前.然后依照创建时间依次排序 ...

  9. linux 【第五篇】特殊权限及定时任务

    特殊权限 [root@VM_141_154_centos ~]# ls -ld /tmp drwxrwxrwt. 8 root root 4096 Apr 5 08:11 /tmp /tmp/ 公共目 ...

  10. 自己写好的pdo数据库抽象层 mysql为例

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/qq1355541448/article/details/31787719 class pdo_dat ...