CSU 1225 最长上升子序列并记录其个数
for(int j=;j<i;j++){
if(h[i] > h[j]){
if(len[i] == len[j] + ) cnt[i]+=cnt[j];
if(len[i] < len[j] + ) len[i] = len[j] + , cnt[i] = cnt[j];
}
//身高相同的情况统计
/*else if(h[i] == h[j]){
if(len[i] == len[j]) cnt[i] += cnt[j];
if(len[i] < len[j]) len[i] = len[j] , cnt[i] = cnt[j];
}*/
}
这道题需要注意的一点是如果出现身高相同的情况,那么这两个人不管谁站在队列中只算一种情况:如上面的代码所示,如果相同也统计那么就会报错,但是样例因为没有相同高度所以可以过
len[i] 表示前i个对象能构建的最长的子序列长度
cnt[i] 表示前i个对象构建的最长子序列长度的个数
#include <cstdio>
#include <cstring>
using namespace std;
#define max(a,b) a>b?a:b
const int N = ;
int h[N] , len[N] , cnt[N];
int main()
{
freopen("test.in","rb",stdin);
int n;
while(scanf("%d",&n)!=EOF){
memset(len , ,sizeof(len));
memset(cnt , ,sizeof(cnt));
len[] = , cnt[] = ;
for(int i = ;i < n;i++)
{
len[i] = cnt[i] = ;
scanf("%d",h+i);
for(int j=;j<i;j++){
if(h[i] > h[j]){
if(len[i] == len[j] + ) cnt[i]+=cnt[j];
if(len[i] < len[j] + ) len[i] = len[j] + , cnt[i] = cnt[j];
}
/*else if(h[i] == h[j]){
if(len[i] == len[j]) cnt[i] += cnt[j];
if(len[i] < len[j]) len[i] = len[j] , cnt[i] = cnt[j];
}*/
}
}
int max_len = , cnt_all = ;
for(int i=;i<n;i++){
max_len = max(max_len , len[i]);
}
for(int i=;i<n;i++){
if(max_len == len[i])
cnt_all += cnt[i];
}
printf("%d %d\n",max_len,cnt_all);
}
return ;
}
CSU 1225 最长上升子序列并记录其个数的更多相关文章
- 【最长下降子序列的长度和个数】 poj 1952
转自http://blog.csdn.net/zhang360896270/article/details/6701589 这题要求最长下降子序列的长度和个数,我们可以增加数组maxlen[size] ...
- 【模拟】CSU 1807 最长上升子序列~ (2016湖南省第十二届大学生计算机程序设计竞赛)
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1807 题目大意: 给你一个长度为N(N<=105)的数列,数列中的0可以被其他数 ...
- HDU - 1160 最长上升子序列以及记录路径
题意:第一列,给出老鼠的重量,第二列,给出老鼠的速度,要证明老鼠的重量越大,速度越小,给出最多老鼠的数量,并说明第几只. 思路:先将老鼠按照重量从大到小排序,然后速度是从小到大,求最长上升子序列,学习 ...
- CSU 1807: 最长上升子序列~ 分类讨论
1807: 最长上升子序列~ Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 138 Solved: 17[Submit][Status][Web Bo ...
- POJ - 2533 Longest Ordered Subsequence与HDU - 1257 最少拦截系统 DP+贪心(最长上升子序列及最少序列个数)(LIS)
Longest Ordered Subsequence A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let ...
- (最长上升子序列 并记录过程)FatMouse's Speed -- hdu -- 1160
http://acm.hdu.edu.cn/showproblem.php?pid=1160 FatMouse's Speed Time Limit: 2000/1000 MS (Java/Other ...
- [C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列、0-1背包
一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子 ...
- - > 动规讲解基础讲解七——最长单增子序列
(LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列 ...
- 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法
1.题目描述 给定数组arr,返回arr的最长递增子序列. 2.举例 arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答 ...
随机推荐
- B - Archer
Problem description SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to ...
- 在面试官问你BS和CS区别的时候如何回答??
这是我下来整理好的,如果哪里不全,望大家多多指教 C/S是Client/Server的缩写.服务器通常采用高性能的PC.工作站或小型机,并采用大型数据库系统,如Oracle.Sybase.Inform ...
- 447 Number of Boomerangs 回旋镖的数量
给定平面上 n 对不同的点,“回旋镖” 是由点表示的元组 (i, j, k) ,其中 i 和 j 之间的距离和 i 和 k 之间的距离相等(需要考虑元组的顺序).找到所有回旋镖的数量.你可以假设 n ...
- rhel7安装oracle 11gR2,所需的依赖包
binutils-2.23.52.0.1-30.el7.x86_64 compat-libstdc++-33-3.2.3-61.x86_64compat-libstdc++-33-3.2.3-61.i ...
- C# 控制台语音计算器
记得上高中时,给人当会计,帮忙结算月度工资:用的就是带语音功能的计算器! 当时用起来倍儿爽,于是速度加倍,效率加速:结果让老板赔了不少钱! 就是因为这个,才对语音计算器有了深刻印象!可能是这货坑了我! ...
- AJPFX关于Java Object类常用方法小总结
java.lang.Object java.lang包在使用的时候无需显示导入,编译时由编译器自动导入. Object类是类层次结构的根,Java中所有的类从根本上都继承自这个类. Object类 ...
- AJPFX关于抽象方法和接口
class Demo_Animal1{ public static void main(String[] args) { Cat a = new Cat("加菲 ...
- VMware虚拟机下载与安装
VMware下载与安装 一.虚拟机的下载 1.进入VMware官网,点击左侧导航栏中的下载,再点击图中标记的Workstation Pro,如下图所示. 2.根据操作系统选择合适的产品,在这里以Win ...
- 源代码管理SVN的使用
SVN 全称是Subversion,集中式版本控制之王者 SVN 版本控制,需要自己搭建一个管理代码的服务器,提供开发人员,上传和下载 1.基本介绍 使用环境 要想利用SVN管理源代码,必须得有2套环 ...
- 【C++】模板简述(五):类型萃取
功能 类型萃取,在STL中用到的比较多,用于判断一个变量是否为POD类型. 简述来说可以用来判断出某个变量是内置类型还是自定义类型. 通过类型萃取,萃取到变量类型,对不同变量进行不同处理,可以提升程序 ...