首先,使用 ScalaIDE 或 IDEA 创建 Scala 的 Maven 工程。需要用到 spark-core,spark-sql,spark-streaming 的 jar 包,pom 文件如下:

<properties>
<spark.version>2.1.0</spark.version>
<scala.version>2.11</scala.version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>

一、创建 SparkContext 对象
package core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Logger
import org.apache.log4j.Level

object Demo {
def main(args: Array[String]): Unit = {
// Spark使用log4j打印日志,为了避免程序执行过程中产生过多的日志,添加如下两行代码
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

// 先创建SparkConf,再通过SparkConf创建SparkContext
val conf = new SparkConf().setAppName("demo").setMaster("local")
val sc = new SparkContext(conf)

// 进行词频统计
val rdd = sc.textFile("hdfs://qujianlei:9000/data/data.txt").
flatMap(_.split(" ")).
map(x => (x, 1)).
reduceByKey(_+_).
saveAsTextFile("hdfs://qujianlei:9000/output/spark/0214")

sc.stop()
}
}

二、创建 SQLContext 对象
1. 通过 new SQLContext 对象的方式
package sql

import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkContext

case class People(id:Int, name:String, age:Int)

object Demo {
def main(args: Array[String]): Unit = {
// Spark使用log4j打印日志,为了避免程序执行过程中产生过多的日志,添加如下两行代码
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

// new SQLContext的方式创建SQLContext
val conf = new SparkConf().setAppName("demo").setMaster("local")
val sc = new SparkContext(conf)
val sqlc = new SQLContext(sc)

// 导入SQLContext的隐式转换函数toDF
import sqlc.implicits._

val peopleRDD = sc.textFile("d:/students.txt").
map(_.split(" ")).
map(x => People(x(0).toInt, x(1), x(2).toInt))

// 将RDD转换成DataFrame
val peopleDF = peopleRDD.toDF

// 将DataFrame注册成表
peopleDF.createOrReplaceTempView("people")

// 通过SQLContext执行查询
sqlc.sql("select * from people").show()

sc.stop()
}
}

2. 通过 Spark2.0 引入的 SparkSession 间接访问 SQLContext,SparkContext
package sql

import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkContext
import org.apache.spark.sql.SparkSession

case class People(id:Int, name:String, age:Int)

object Demo {
def main(args: Array[String]): Unit = {
// Spark使用log4j打印日志,为了避免程序执行过程中产生过多的日志,添加如下两行代码
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

// 通过sparkSession来间接访问SQLContext
val spark = SparkSession.builder().appName("demo").master("local").getOrCreate()

// 导入SQLContext的隐式转换函数toDF
import spark.sqlContext.implicits._
// 下面这种导入方式也可以
// import spark.implicits

val peopleRDD = spark.sparkContext.textFile("d:/students.txt").
map(_.split(" ")).
map(x => People(x(0).toInt, x(1), x(2).toInt))

// 将RDD转换成DataFrame
val peopleDF = peopleRDD.toDF

// 将DataFrame注册成表
peopleDF.createOrReplaceTempView("people")

// 通过SQLContext执行查询
spark.sqlContext.sql("select * from people").show()
// 下面这种方式也可以
// spark.sql("select * from people").show()

spark.stop()
}
}

三、创建 StreamingContext 对象
package streaming

import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.storage.StorageLevel

object SocketStream {
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "F:\\第七期\\hadoop-2.7.3\\hadoop-2.7.3");

// 为了避免执行过程中打印过多的日志
Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

// local[x]这里,x的值至少为2,表示有两个线程执行流计算,一个接受数据,一个处理数据
// 如果将程序提交到Spark集群上运行,同理,至少保证CPU有2个核心
val conf = new SparkConf().setAppName("demo").setMaster("local[2]")
val ssc = new StreamingContext(conf, Seconds(3))

val socketStream = ssc.socketTextStream("192.168.0.1", 1234, StorageLevel.MEMORY_AND_DISK_SER)

socketStream.print()

ssc.start()
ssc.awaitTermination()
}
}

启动程序,在 Linux 上启动 netcat:nc -l -p 1234,发送数据:

spark学习常用的操作的更多相关文章

  1. 【spark】常用转换操作:reduceByKey和groupByKey

    1.reduceByKey(func) 功能: 使用 func 函数合并具有相同键的值. 示例: val list = List("hadoop","spark" ...

  2. 【spark】常用转换操作:join

    join就表示内连接. 对于内链接,对于给定的两个输入数据集(k,v1)和(k,v2) 根据相同的k进行连接,最终得到(k,(v1,v2))的数据集. 示例 val arr1 = Array((&qu ...

  3. 【spark】常用转换操作:keys 、values和mapValues

    1.keys 功能: 返回所有键值对的key 示例 val list = List("hadoop","spark","hive",&quo ...

  4. 【spark】常用转换操作:sortByKey()和sortBy()

    1.sortByKey() 功能: 返回一个根据键排序的RDD 示例 val list = List(("a",3),("b",2),("c" ...

  5. Spark学习之键值对操作总结

    键值对 RDD 是 Spark 中许多操作所需要的常见数据类型.键值对 RDD 通常用来进行聚合计算.我们一般要先通过一些初始 ETL(抽取.转化.装载)操作来将数据转化为键值对形式.键值对 RDD ...

  6. Spark学习之键值对(pair RDD)操作(3)

    Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建 ...

  7. jackson学习之三:常用API操作

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. 在spark中操作mysql数据 ---- spark学习之七

    使用spark的 DataFrame 来操作mysql数据. DataFrame是比RDD更高一个级别的抽象,可以应用SQL语句进行操作,详细参考: https://spark.apache.org/ ...

  9. Spark学习笔记之RDD中的Transformation和Action函数

    总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pys ...

随机推荐

  1. javase(10)_多线程基础

    一.排队等待 1.下面的这个简单的 Java 程序完成四项不相关的任务.这样的程序有单个控制线程,控制在这四个任务之间线性地移动.此外,因为所需的资源 ― 打印机.磁盘.数据库和显示屏 -- 由于硬件 ...

  2. HTML5 FormData 模拟表单控件 支持异步上传二进制文件 移动端

    FormData是XMLHttpRequest Level 2添加的一个新的接口,利用FormData对象,我们可以通过JavaScript用一些键值对来模拟一系列表单控件,还可以使用XMLHttpR ...

  3. 51nod——1174 区间中最大的数(ST)

    题目链接 给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,最大的数是多少. 例如: 1 7 6 3 1.i = 1, j = 3,对应的数为7 6 3,最大的数 ...

  4. 身为前端开发工程师,你需要了解的搜索引擎优化SEO.

    网站url网站创建具有良好描述性.规范.简单的url,有利于用户更方便的记忆和判断网页的内容,也有利于搜索引擎更有效的抓取您的网站.网站设计之初,就应该有合理的url规划. 处理方式: 1.在系统中只 ...

  5. jsDate()

    var myTime=new Date();//myTime的数据类型为(typeof) object //下面得到的都为number 类型 getFullYear();年 四位数字返回年份. get ...

  6. Qtopia移植

    Qtopia 是Trolltech 公司为采用嵌入式Linux操作系统的消费电子设备而开发的综合应用平台, Qtopia包含完整的应用层.灵活的用户界面.窗口操作系统.应用程序启动程序以及开发框架.下 ...

  7. 【php】 PHP 支持 9 种原始数据类型

    PHP 支持 9 种原始数据类型. 四种标量类型: boolean(布尔型) integer(整型) float(浮点型,也称作 double) string(字符串) 三种复合类型: array(数 ...

  8. 什么是php?php的优缺点有哪些?与其它编程语言的优缺点?

    身为一个PHP开发者,有必要了解一下PHP的缺点,知道每种语言的优点和缺点,才能知道某种语言在什么场景下适合使用,在什么场景下不适合使用. 这个问题我曾经面试的时候遇到过,我之前没总结过,第一问大部分 ...

  9. redis 内存管理与数据淘汰机制(转载)

    原文地址:http://www.jianshu.com/p/2f14bc570563?from=jiantop.com 最大内存设置 默认情况下,在32位OS中,Redis最大使用3GB的内存,在64 ...

  10. redis安装与安全设置

    redis Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件 yum安装redis 1.yum安装   #前提得配置好阿里云yum源,epel源 # ...