Problem 2105 Digits Count

 Problem Description

Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations:

Operation 1: AND opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation).

Operation 2: OR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation).

Operation 3: XOR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation).

Operation 4: SUM L R

We want to know the result of A[L]+A[L+1]+...+A[R].

Now can you solve this easy problem?

 Input

The first line of the input contains an integer T, indicating the number of test cases. (T≤100)

Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.

Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n).

Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)

 Output

For each test case and for each "SUM" operation, please output the result with a single line.

 Sample Input

1 4 4 1 2 4 7 SUM 0 2 XOR 5 0 0 OR 6 0 3 SUM 0 2

 Sample Output

7 18

题意不多说了。 观察下a的值表示成二进制不会超过4位内存刚刚够。对每一位维护一下线段树就好了。

具体维护方法如下:

由于  :   1 & 0 = 0

0 & 0 =0    所以&0会改变区间值。

1& 1 =1

0&1=0  所以&1 区间值不变,可以忽略。

同理可以分析其他的操作。然后线段树lazy维护一下1的个数就好了。  注意xor 和& or是互斥的,也就是说当标记了&或or时应把标记 xor清空。

  1 // by cao ni ma
  2 // hehe
  3 #include <cstdio>
  4 #include <cstring>
  5 #include <algorithm>
  6 #include <vector>
  7 #include <queue>
  8 using namespace std;
  9 const int MAX = +;
 10 typedef long long ll;
 11 int sum[][MAX<<];
 12 int col_or[][MAX<<],col_xor[][MAX<<];
 13 int A[MAX];
 14 void pushup(int o,int cur){
 15     sum[cur][o]=sum[cur][o<<]+sum[cur][o<<|];
 16 }
 17 
 18 void pushdown(int o,int cur,int m){
 19     if(col_or[cur][o]!=-){
 20         col_xor[cur][o<<]=col_xor[cur][o<<|]=;
 21         col_or[cur][o<<]=col_or[cur][o<<|]=col_or[cur][o];
 22         sum[cur][o<<]=(m-(m>>))*col_or[cur][o<<];
 23         sum[cur][o<<|]=(m>>)*col_or[cur][o<<|];
 24         col_or[cur][o]=-;
 25     }
 26     if(col_xor[cur][o]){
 27         col_xor[cur][o<<]^=,col_xor[cur][o<<|]^=;
 28         sum[cur][o<<]=((m-(m>>))-sum[cur][o<<]);
 29         sum[cur][o<<|]=((m>>)-sum[cur][o<<|]);
 30         col_xor[cur][o]=;
 31     }
 32 }
 33 
 34 void build(int L,int R,int o,int cur){
 35     col_or[cur][o]=-;
 36     col_xor[cur][o]=;
 37     if(L==R){
 38         sum[cur][o]=((A[L]&(<<cur))?:);
 39     }
 40     else{
 41         int mid=(L+R)>>;
 42         build(L,mid,o<<,cur);
 43         build(mid+,R,o<<|,cur);
 44         pushup(o,cur);
 45     }
 46 }
 47 
 48 void modify2(int L,int R,int o,int ls,int rs,int v,int cur){
 49     if(ls<=L && rs>=R){
 50         col_xor[cur][o]=;
 51         col_or[cur][o]=v;
 52         sum[cur][o]=v*(R-L+);
 53         return ;
 54     }
 55     pushdown(o,cur,R-L+);
 56     int mid=(R+L)>>;
 57     if(ls<=mid) modify2(L,mid,o<<,ls,rs,v,cur);
 58     if(rs>mid) modify2(mid+,R,o<<|,ls,rs,v,cur);
 59     pushup(o,cur);
 60 
 61 }
 62 
 63 void modify1(int L,int R,int o,int ls,int rs,int v,int cur){
 64     if(ls<=L && rs>=R){
 65         if(col_or[cur][o]!=-){
 66             col_or[cur][o]^=;
 67             sum[cur][o]=(R-L+)-sum[cur][o];
 68             return ;
 69         }
 70         else{
 71             col_xor[cur][o]^=;
 72             sum[cur][o]=(R-L+)-sum[cur][o];
 73             return ;
 74         }
 75     }
 76     pushdown(o,cur,R-L+);
 77     int mid=(R+L)>>;
 78     if(ls<=mid) modify1(L,mid,o<<,ls,rs,v,cur);
 79     if(rs>mid) modify1(mid+,R,o<<|,ls,rs,v,cur);
 80     pushup(o,cur);
 81 }
 82 
 83 int Query(int L,int R,int o,int ls,int rs,int cur) {
 84     if(ls<=L && rs>=R) return sum[cur][o];
 85     pushdown(o,cur,R-L+);
 86     int mid=(R+L)>>; int ans=;
 87     if(ls<=mid) ans+=Query(L,mid,o<<,ls,rs,cur);
 88     if(rs>mid) ans+=Query(mid+,R,o<<|,ls,rs,cur);
 89     return ans;
 90 }
 91 
 92 int main(){
 93     int n,m,cas,ls,rs,val;
 94     char op[];
 95     scanf("%d",&cas);
 96     while(cas--){
 97         scanf("%d %d",&n,&m);
 98         for(int i=;i<=n;i++) {
 99             scanf("%d",&A[i]);
         }
         for(int i=;i<;i++) {
             build(,n,,i);
         }
         for(int i=;i<m;i++) {
             scanf("%s",op);
             if(op[]=='S'){
                 scanf("%d %d",&ls,&rs);
                 ls++,rs++;
                 int ans=;
                 for(int i=;i<;i++) {
                     ans+=Query(,n,,ls,rs,i)*(<<i);
                 }
                 printf("%d\n",ans);
             }
             else if(op[]=='O'){
                 scanf("%d %d %d",&val,&ls,&rs);
                 rs++,ls++;
                 for(int i=;i<;i++) {
                     if(val&(<<i)){
                         modify2(,n,,ls,rs,,i);
                     }
                 }
             }
             else if(op[]=='A'){
                 scanf("%d %d %d",&val,&ls,&rs);
                 rs++,ls++;
                 for(int i=;i<;i++) {
                     if(!(val&(<<i))){
                        modify2(,n,,ls,rs,,i);
                     }
                 }
             }
             else{
                 scanf("%d %d %d",&val,&ls,&rs);
                 rs++,ls++;
                 for(int i=;i<;i++) {
                     if((val&(<<i))){
                          modify1(,n,,ls,rs,,i);
                     }
                 }
             }
         }
     }
     return ;

145 }

FZU 2105 (线段树)的更多相关文章

  1. FZU 2171 线段树 区间更新求和

    很模板的题 在建树的时候输入 求和后更新 #include<stdio.h> #include<string.h> #include<algorithm> #inc ...

  2. FZU 2171(线段树的延迟标记)

    题意:容易理解. 分析:时隔很久,再一次写了一道线段树的代码,之前线段树的题也做了不少,包括各种延迟标记,但是在组队分任务之后,我们队的线段树就交给了另外一个队友在搞, 然后我就一直没去碰线段树的题了 ...

  3. HDU 3974 Assign the task(简单线段树)

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  5. FZU 2105 Digits Count(按位维护线段树)

    [题目链接] http://acm.fzu.edu.cn/problem.php?pid=2105 [题目大意] 给出一个序列,数字均小于16,为正数,每次区间操作可以使得 1. [l,r]区间and ...

  6. FZU 2105 Digits Count(线段树)

    Problem 2105 Digits Count Accept: 302 Submit: 1477 Time Limit: 10000 mSec Memory Limit : 262144 KB P ...

  7. F - Change FZU - 2277 (DFS序+线段树)

    题目链接: F - Change FZU - 2277 题目大意: 题意: 给定一棵根为1, n个结点的树. 有q个操作,有两种不同的操作 (1) 1 v k x : a[v] += x, a[v ' ...

  8. FZu Problem 2236 第十四个目标 (线段树 + dp)

    题目链接: FZu  Problem 2236 第十四个目标 题目描述: 给出一个n个数的序列,问这个序列内严格递增序列有多少个?不要求连续 解题思路: 又遇到了用线段树来优化dp的题目,线段树节点里 ...

  9. fzu 2082 过路费 (树链剖分+线段树 边权)

    Problem 2082 过路费 Accept: 887    Submit: 2881Time Limit: 1000 mSec    Memory Limit : 32768 KB  Proble ...

随机推荐

  1. P1606 [USACO07FEB]荷叶塘Lilypad Pond(最短路计数)

    P1606 [USACO07FEB]荷叶塘Lilypad Pond 题目描述 FJ has installed a beautiful pond for his cows' aesthetic enj ...

  2. [App Store Connect帮助]六、测试 Beta 版本(1)TestFlight Beta 版测试概述(iOS、Apple TVOS、watchOS)

    TestFlight Beta 版测试让您可以分发您 App 的 Beta 版构建版本给测试员并收集反馈.您可以在您的 App Store Connect 帐户中一次为至多 100 个 App 启用 ...

  3. 题解报告:hdu 2717 Catch That Cow(bfs)

    Problem Description Farmer John has been informed of the location of a fugitive cow and wants to cat ...

  4. Android 性能优化(15)网络优化( 11)Manipulating Broadcast Receivers On Demand

    Manipulating Broadcast Receivers On Demand This lesson teaches you to Toggle and Cascade State Chang ...

  5. rman 问题

    1. RMAN Repeatedly Fail To Backup Archivelogs with RMAN-20242 Cause: There is a mis-match between th ...

  6. 经典矩阵dp寻找递增最大长度

    竖向寻找矩阵最大递增元素长度,因为要求至少一列为递增数列,那么每行求一下最大值就可以作为len[i]:到i行截止的最长的递增数列长度. C. Alyona and Spreadsheet time l ...

  7. SQL Split函数,将一串字符串返回成table

    写法一: CREATE FUNCTION [dbo].[Split] ( @str VARCHAR(MAX), --传进来的字符串 ) --分割符 ) RETURNS @t TABLE --定义一个虚 ...

  8. Redis安全与持久化(适合小白阅读)

    前言:Redis的使用越来越重要.以下仅为个人学习的点点记录.仅供参考. 一.简单的redis安全性设置 1. 生产环境的redis最好建议在redis配置文件中设置bind.配置允许指定的ip登陆r ...

  9. [ POI 2010 ] Antisymmetry

    \(\\\) \(Description\) 给出一个长度为 \(N\) 的二进制串,定义一个子串是优秀的,当且仅当其正着看,和倒着按位取反后看结果是一样的,求整个串有多少个优秀的子串. \(N\le ...

  10. 3星|《未来公司》:Uber简史

    未来公司(卡兰尼克和他的Uber帝国)(精) 从Uber创始人卡兰尼克的角度讲的Uber简史,截止到2017年.书中有不少Uber的负面新闻,比国内的同类书要好. 基本是流水账.想了解这家公司的历史, ...