题目链接:https://vjudge.net/problem/HUST-1017

1017 - Exact cover

时间限制:15秒 内存限制:128兆

自定评测 7673
次提交 3898 次通过
题目描述
There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
输入
There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
输出
First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
样例输入
6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7
样例输出
3 2 4 6
提示
来源
dupeng

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int MAXN = 1e3+10;
const int MAXM = 1e3+10;
const int maxnode = 1e6+10; int n, m;
struct DLX //矩阵的行和列是从1开始的
{
int n, m, size; //size为结点数
int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode];
int H[MAXN], S[MAXM]; //H为每一行的头结点,但不参与循环。S为每一列的结点个数
int ansd, ans[MAXN]; void init(int _n, int _m) //m为列
{
n = _n;
m = _m;
for(int i = 0; i<=m; i++) //初始化列的头结点
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i-1;
R[i] = i+1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1; i<=n; i++) H[i] = -1; //初始化行的头结点
} void Link(int r, int c)
{
size++; //类似于前向星
Col[size] = c;
Row[size] = r;
S[Col[size]]++;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r]==-1) H[r] = L[size] = R[size] = size; //当前行为空
else //当前行不为空: 头插法,无所谓顺序,因为Row、Col已经记录了位置
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
} void remove(int c) //c是列的编号, 不是结点的编号
{
L[R[c]] = L[c]; R[L[c]] = R[c]; //在列的头结点的循环队列中, 越过列c
for(int i = D[c]; i!=c; i = D[i])
for(int j = R[i]; j!=i; j = R[j])
{
//被删除结点的上下结点仍然有记录
U[D[j]] = U[j];
D[U[j]] = D[j];
S[Col[j]]--;
}
} void resume(int c)
{
L[R[c]] = R[L[c]] = c;
for(int i = U[c]; i!=c; i = U[i])
for(int j = L[i]; j!=i; j = L[j])
{
U[D[j]] = D[U[j]] = j;
S[Col[j]]++;
}
} bool Dance(int d)
{
if(R[0]==0)
{
printf("%d ", d);
for(int i = 0; i<d; i++)
printf("%d ", ans[i]);
printf("\n");
return true;
} int c = R[0];
for(int i = R[0]; i!=0; i = R[i]) //挑结点数最少的那一列,否则会超时,那为什么呢?
if(S[i]<S[c])
c = i; remove(c);
for(int i = D[c]; i!=c; i = D[i])
{
ans[d] = Row[i];
for(int j = R[i]; j!=i; j = R[j]) remove(Col[j]);
if(Dance(d+1)) return true;
for(int j = L[i]; j!=i; j = L[j]) resume(Col[j]);
}
resume(c);
return false;
}
}; DLX dlx;
int main()
{
while(scanf("%d%d", &n, &m)!=EOF)
{
dlx.init(n,m); //初始化矩阵, n*m为矩阵的大小
for(int i = 1; i<=n; i++)
{
int num, j;
scanf("%d",&num);
while(num--)
{
scanf("%d", &j);
dlx.Link(i, j); //在矩阵中的第i行, 第j列加入一个“1”
}
}
if(!dlx.Dance(0))
puts("NO");
}
return 0;
}

HUST1017 Exact cover —— Dancing Links 精确覆盖 模板题的更多相关文章

  1. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  2. [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

    DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  3. 【转】Dancing Links精确覆盖问题

    原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文    精确覆盖问题    解决精确覆盖问题    舞蹈步骤    效率分析 ...

  4. HUST 1017 Exact cover(DLX精确覆盖)

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  5. hihoCoder #1321 : 搜索五•数独 (Dancing Links ,精确覆盖)

    hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. ...

  6. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  7. ZOJ 3209 Treasure Map (Dancing Links 精确覆盖 )

    题意 :  给你一个大小为 n * m 的矩形 , 坐标是( 0 , 0 ) ~ ( n , m )  .然后给你 p 个小矩形 . 坐标是( x1 , y1 ) ~ ( x2 , y2 ) , 你选 ...

  8. HDU 3111 Sudoku ( Dancing Links 精确覆盖模型 )

    推荐两篇学DLX的博文: http://bbs.9ria.com/thread-130295-1-1.html(这篇对DLX的工作过程演示的很详细) http://yzmduncan.iteye.co ...

  9. POJ3074 Sudoku —— Dancing Links 精确覆盖

    题目链接:http://poj.org/problem?id=3074 Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

随机推荐

  1. D3拖动效果

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. MongoDB增删改查操作详解(命令行)

    一.插入 MongoDB的插入操作很简单,使用insert方法,这里演示从创建数据库.创建集合到插入文档.查询文档. 集合创建方法参数说明: size:集合最大空间 max:集合最多文档数量 (超出s ...

  3. codevs——1507 酒厂选址

    1507 酒厂选址  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description Abstinence(戒酒) ...

  4. [Bzoj1112][POI2008]砖块Klo(splay)

    1112: [POI2008]砖块Klo Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2353  Solved: 831[Submit][Statu ...

  5. spark hbase

    1 配置 1.1 开发环境: HBase:hbase-1.0.0-cdh5.4.5.tar.gz Hadoop:hadoop-2.6.0-cdh5.4.5.tar.gz ZooKeeper:zooke ...

  6. Java代码规范和质量检查插件-Checkstyle(官方资源)

    其实Checkstyle是一个JAR包,然后第三方开发者开发了Eclipse/IDEA的插件. 官网: https://github.com/checkstyle/checkstyle Eclipse ...

  7. SystemTap 静态探针安装包

     yum install systemtap-sdt-devel 

  8. CNN网络--AlexNet

    ImageNet Classification with Deep Convolutional Neural Networks 从AlexNet剖析-卷积网络CNN的一般结构 AlexNet是Hint ...

  9. Ubuntu Desktop 常用软件

    IDE: eclipse ***: firefox,登陆账号可以同步书签,我用了全球账号. firefox插件:FireGestures(手势), NoSquint(全局缩放),Url to QRco ...

  10. NSArray中存的是实体时的排序

    NSArray中存储的是实体时的排序 by 伍雪颖 NSSortDescriptor *sortDescriptor1 = [NSSortDescriptor sortDescriptorWithKe ...