bzoj 4603 平凡的骰子
题目大意:
思路:
首先我们需要求出整个凸多面体的重心
可以通过把多面体剖分为四面体 求出每个四面体的重心
四面体的重心为四个点的坐标和/4
对每个四面体的重心 加上它们体积的权 加权平均数即为整个的重心
(求每个四面体的体积可以用三个向量的混合积
因为给出了求凸面三角形的公式
因此一个凸面上凸N边形的公式为它的内角和-(N-2)*pi
这样这个面的答案为面积/整个圆的表面积即4pi
(求二面角可以用叉积 求出两个法向量然后运用课内知识求出二面角
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#define inf 2139062143
#define ll long long
#define MAXN 200
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
const double pi=acos(-);
int n,m,alpha[MAXN][MAXN],num[MAXN];
struct Vector{double x,y,z;}p[MAXN];
Vector operator + (const Vector &a,const Vector &b) {return (Vector){a.x+b.x,a.y+b.y,a.z+b.z};}
Vector operator - (const Vector &a,const Vector &b) {return (Vector){a.x-b.x,a.y-b.y,a.z-b.z};}
Vector operator * (const Vector &a,const double &b) {return (Vector){a.x*b,a.y*b,a.z*b};}
Vector operator / (const Vector &a,const double &b) {return (Vector){a.x/b,a.y/b,a.z/b};}
Vector operator ^ (const Vector &a,const Vector &b) {return (Vector){a.y*b.z-a.z*b.y,a.z*b.x-a.x*b.z,a.x*b.y-a.y*b.x};}
double operator & (const Vector &a,const Vector &b) {return a.x*b.x+a.y*b.y+a.z*b.z;}
inline double len(Vector a) {return sqrt(a&a);}
inline double getV(Vector a,Vector b,Vector c) {return a&(b^c);}
inline double getA(Vector a,Vector b,Vector c)
{
Vector x=a^c,y=a^b;return acos(x&y/len(x)/len(y));
}
int main()
{
n=read(),m=read();Vector tmp,ctr;double x,vs=0.0,ans;
for(int i=;i<=n;i++)
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].z);
for(int i=;i<=m;i++)
{
num[i]=read();
for(int j=;j<=num[i];j++) alpha[i][j]=read();
}
for(int i=;i<=m;i++)
for(int j=;j<num[i];j++)
{
tmp=p[alpha[i][]]+p[alpha[i][j]]+p[alpha[i][j+]];
x=getV(p[alpha[i][]],p[alpha[i][j]],p[alpha[i][j+]]);
vs+=x,ctr=ctr+tmp*x;
}
ctr=ctr/(vs*);
for(int i=;i<=n;i++) p[i]=p[i]-ctr;
for(int i=;i<=m;i++)
{
ans=;
for(int j=;j<=num[i];j++) ans+=getA(p[alpha[i][j]],p[alpha[i][j!=?j-:num[i]]],p[alpha[i][j!=num[i]?j+:]]);
printf("%.7lf\n",(ans-(num[i]-)*pi)/(pi*));
}
}
bzoj 4603 平凡的骰子的更多相关文章
- [Sdoi2016]平凡的骰子
描述 这是一枚平凡的骰子.它是一个均质凸多面体,表面有n个端点,有f个面,每一面是一个凸多边形,且任意两面不共面.将这枚骰子抛向空中,骰子落地的时候不会发生二次弹跳(这是一种非常理想的情况).你希望知 ...
- [LOJ 2070] 「SDOI2016」平凡的骰子
[LOJ 2070] 「SDOI2016」平凡的骰子 [题目链接] 链接 [题解] 原题求的是球面面积 可以理解为首先求多面体重心,然后算球面多边形的面积 求重心需要将多面体进行四面体剖分,从而计算出 ...
- 【LOJ】#2070. 「SDOI2016」平凡的骰子
题解 用了一堆迷之复杂的结论结果迷之好写的计算几何???? 好吧,要写立体几何了 如果有名词不懂自己搜吧 首先我们求重心,我们可以求带权重心,也就是x坐标的话是所有分割的小四面体的x坐标 * 四面体体 ...
- 【Vijos 1998】【SDOI 2016】平凡的骰子
https://vijos.org/p/1998 三维计算几何. 需要混合积求四面体体积: 四面体剖分后合并带权重心求总重心: 四面体重心的横纵坐标是四个顶点的横纵坐标的平均数: 三维差积求平面的法向 ...
- LOJ#2070. 「SDOI2016」平凡的骰子(计算几何)
题面 传送门 做一道题学一堆东西不管什么时候都是美好的体验呢-- 前置芝士 混合积 对于三个三维向量\(a,b,c\),定义它们的混合积为\((a\times b)\cdot c\),其中$\time ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- [LOJ 2134][UOJ 132][BZOJ 4200][NOI 2015]小园丁与老司机
[LOJ 2134][UOJ 132][BZOJ 4200][NOI 2015]小园丁与老司机 题意 给定平面上的 \(n\) 个整点 \((x_i,y_i)\), 一共有两个问题. 第一个问题是从原 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ1298[SCOI2009]骰子的学问
Description Input 第一行为两个整数n, m.第二行有n个整数,为a1,a2, -, an. Output 包含n行,每行m个1~n×m的正整数,各不相同,以空格分开.如果有多解,输出 ...
随机推荐
- zoj 2932 The Seven Percent Solution
The Seven Percent Solution Time Limit: 2 Seconds Memory Limit: 65536 KB Uniform Resource Identi ...
- [codeforces551E]GukiZ and GukiZiana
[codeforces551E]GukiZ and GukiZiana 试题描述 Professor GukiZ was playing with arrays again and accidenta ...
- 间谍网络(tarjan缩点)
洛谷传送门 看着这道题给人感觉就是tarjan求SCC,然而还得判断是否能控制全部间谍,这就得先从可以贿赂的点dfs一遍. 如果没有全部被标记了,就输出NO,再从没被标记的点里找最小的标号. 如果全被 ...
- windows下安装使用WGET
windows下安装WGET 1. 安装wget www.2cto.com 网址:http://gnuwin32.sourceforge.net/packages/wget.htm 下载 ...
- C语言基本概念之表达式
原文地址:http://blog.csdn.net/astrotycoon/article/details/50857326 [侵删] 什么是表达式(表达式的定义)? 对于表达式的定义,好像从来没有人 ...
- 给Ubuntu更换成163的源(sources.list)Unable to locate package
Refer to http://www.crifan.com/ubuntu_change_sources_list_to_163/ 1. backup /etc/apt/sources.list 2. ...
- mysql 时间类型datetime与timestamp区别比较
mysql 时间类型datetime与timestamp区别比较 相同点: 显示宽度和格式相同,显示宽度固定在19字符,格式为YYYY-MM-DD HH:MM:SS. 不同点: (1)时间范围不同: ...
- POJ 2348 Euclid's Game【博弈】
题目链接: http://poj.org/problem?id=2348 题意: 给定两个数,两个人每次从较大数中减去较小数的倍数,谁先得到0谁获胜,为谁赢? 分析: 令一种可能出现的整数对为(a,b ...
- hdu6215 Brute Force Sorting(模拟)
题意 给一个长度为n(n<=1e5)的序列,如果一个位置i满足a[i-1]>a[i]或者a[i]>a[i+1],那么我们就称该位置是不合法的位置 先把序列中所有不合法的位置统一找出来 ...
- Vue基础学习
使用vue-cli构建初始化vue项目 vue init webpack myfirst 项目截图:(开发工具:webStorm) 主要练习了vue的基本指令:v-bind.v-if.v-show.v ...