Halloween treats
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6631   Accepted: 2448   Special Judge

Description

Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts,
the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number
of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.

The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space
separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit
neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets).
If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

Source

题意:给出c和n,接下来n个数,求随意的几个数的和为c的倍数,输出随意一组答案(注意是随意的)

抽屉原理: 放10个苹果到九个抽屉,最少有一个抽屉有大于1的苹果

这个题为什么说是抽屉原理呢?  你计算前n个数(一共同拥有n个和)的和mod  c ,由于n大于c,所以你推測会有多少个余数。

最多有 n个。即 0~n-1,而0是满足条件的,换而言之。这n个余数中要么有0,要么最少有两个同样的余数,

如今看两个余数同样的情况,比如   如果sum[1]%c==sum[n]%c  那么a[2]+a[3]+..+a[n]就是 c  的倍数。就说这么多了。

看代码吧:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100005 int a[N];
int vis[N];
int c,n; int main()
{
int i;
while(~scanf("%d%d",&c,&n))
{
memset(vis,-1,sizeof(vis)); for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
} int temp=0,j; for(i=1;i<=n;i++)
{
temp+=a[i];
temp%=c; if(temp==0)
{
for(j=1;j<=i;j++)
if(j==1)
printf("%d",j);
else
printf(" %d",j); printf("\n");
break;
} if(vis[temp]!=-1)
{ for(j=vis[temp]+1;j<=i;j++)
if(i==j)
printf("%d",j);
else
printf("%d ",j); printf("\n"); break;
} vis[temp]=i;
} }
return 0;
}

POJ 3370 Halloween treats(抽屉原理)的更多相关文章

  1. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  2. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  3. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  4. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  5. uva 11237 - Halloween treats(抽屉原理)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...

  6. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  7. poj 3370 Halloween treats(鸽巢原理)

    Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...

  8. 鸽巢原理应用-分糖果 POJ 3370 Halloween treats

    基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子. 很简单,应用却也很多,很巧妙,看例题: Description Every year there is the same pro ...

  9. UVA 11237 - Halloween treats(鸽笼原理)

    11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...

随机推荐

  1. 数据分析师入门|Python安装MAC版

    最近在学数据分析师入门课,看了大纲,感觉终于不再慌乱踩坑了,开始存档最粗暴版学习笔记,遇到停止的地方按照下文红字直接输入就OK,方便和我一样的小伙伴参考呀,老师讲的很适合我这种初学者,PUSH了很多资 ...

  2. BASH BUILTIN COMMANDS 内建命令

    除非另外说明,这一章介绍的内建命令如果接受 - 引导的选项,那么它也接受 -- 作为参数,来指示选项的结束 : [arguments] 没有效果:这个命令除了扩展 arguments 并且作任何指定的 ...

  3. WPF动画 - Loading加载动画

    存在问题: 最近接手公司一个比较成熟的产品项目开发(WPF桌面端),其中,在登陆系统加载时,60张图片切换,实现loading闪烁加载,快有密集恐惧症了!!! 代码如下: private void L ...

  4. bzoj3994: [SDOI2015]约数个数和(反演+结论?!)

    这题做的历程堪称惊心动魄 刚刚学了莫比乌斯反演的我高高兴兴的和cbx一起反演式子 期间有突破,有停滞,有否定 然后苟蒻的我背着cbx偷偷打开了题解 看到了 我...... 去你的有个性质啊(当然还是自 ...

  5. java_lock锁

    lock锁是一个接口,jdk5.0新增的接口: 在线程中创建一个他的实现类对象Reentrantlock,默认为fals可以改为true,改为true后是有序的 把操作共享资源的代码放入try中,在t ...

  6. 【C语言】控制台窗口图形界面编程(二)窗口信息和填充缓冲区

    目录 00. 目录 01. COORD结构体 02. SMALL_RECT结构 03. CONSOLE_SCREEN_BUFFER_INFO结构体 04. GetConsoleScreenBuffer ...

  7. How To:利用frm和idb文件进行数据恢复.txt

    在另外一个机器上准备测试数据,并传输到dbadb05机器的/mysql/backup/reco/位置下.开始尝试恢复数据一.使用mysqlfrm获取表结构信息及DDL语句. [mysql@dbadb0 ...

  8. vue多视图

    第一步   在app.vue中 <router-view class="b" name="header"> </router-view> ...

  9. show()的几种方法

    1 show()方法和hide()方法 $("selector").show()  从display:none还原元素默认或已设置的display属性$("selecto ...

  10. jquery中ajax原生代码的分析模仿

    function ajax(obj){     var defaults = {         url: "#",         data: {},         type: ...