LeetCode(69) Sqrt(x)
题目
Total Accepted: 67411 Total Submissions: 286086 Difficulty: Medium
Implement int sqrt(int x).
Compute and return the square root of x.
分析
不适用库函数实现求根。
该题目一种解法是利用二分的思想,要注意的问题便是计算溢出问题,数据类型应该采用unsigned long long ;
另一种解法是 牛顿迭代法,思想参考百度百科 以及参考博客
为了方便理解,就先以本题为例:
计算x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,如左图所示。
首先取x0,如果x0不是解,做一个经过(x0,f(x0))这个点的切线,与x轴的交点为x1。
同样的道理,如果x1不是解,做一个经过(x1,f(x1))这个点的切线,与x轴的交点为x2。
以此类推。
以这样的方式得到的xi会无限趋近于f(x)=0的解。
判断xi是否是f(x)=0的解有两种方法:
一是直接计算f(xi)的值判断是否为0,二是判断前后两个解xi和xi-1是否无限接近。
经过(xi, f(xi))这个点的切线方程为f(x) = f(xi) + f’(xi)(x - xi),其中f’(x)为f(x)的导数,本题中为2x。令切线方程等于0,即可求出xi+1=xi - f(xi) / f’(xi)。
继续化简,xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。
AC代码
class Solution {
public:
int mySqrt(int x) {
if (x < 0)
return -1;
//使用二分法求解
unsigned long long lhs = 0, rhs = (x + 1) / 2;
while (lhs <= rhs)
{
unsigned long long mid = (lhs + rhs) / 2;
//注意溢出问题,使用无符号长整型存储临时乘积
unsigned long long tmp1 = mid * mid;
if (tmp1 == x)
{
return mid;
}
else if (tmp1 < x)
{
lhs = mid + 1;
}
else{
rhs = mid - 1;
}//else
}//while
unsigned long long tmp = lhs * lhs;
if (tmp <= x)
return lhs;
else
return rhs;
}
};
LeetCode(69) Sqrt(x)的更多相关文章
- LeetCode(69):x 的平方根
Easy! 题目描述: 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: ...
- Qt 学习之路 2(69):进程
Qt 学习之路 2(69):进程 豆子 2013年11月9日 Qt 学习之路 2 15条评论 进程是操作系统的基础之一.一个进程可以认为是一个正在执行的程序.我们可以把进程当做计算机运行时的一个基础单 ...
- LeetCode(275)H-Index II
题目 Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimi ...
- LeetCode(220) Contains Duplicate III
题目 Given an array of integers, find out whether there are two distinct indices i and j in the array ...
- LeetCode(154) Find Minimum in Rotated Sorted Array II
题目 Follow up for "Find Minimum in Rotated Sorted Array": What if duplicates are allowed? W ...
- LeetCode(122) Best Time to Buy and Sell Stock II
题目 Say you have an array for which the ith element is the price of a given stock on day i. Design an ...
- LeetCode(116) Populating Next Right Pointers in Each Node
题目 Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode * ...
- LeetCode(113) Path Sum II
题目 Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given ...
- LeetCode(107) Binary Tree Level Order Traversal II
题目 Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from l ...
随机推荐
- Hexo瞎折腾系列(7) - Coding Pages申请SSL/TLS证书错误
问题 今天我的个人站点SSL/TLS证书到期,我的证书是由Coding Pages提供的,每次申请成功后有效期是三个月,证书到期后可以继续免费申请.但是当我登陆进入Coding Pages服务的后台并 ...
- 牛客网NOIP赛前集训营-普及组
第一场: A-绩点 题目描述 小A刚考完大学考试.现在已经出了n门课的成绩,他想自己先算一下这些课的绩点是多少.设第i门课的他拿到的绩点是gpai,而这门课的学分是sci,那么他的总绩点用下面的公式计 ...
- Backbone学习记录(6)
路由 backbone将路由规则和一个方法名绑定到一起,来控制单页的hash,以及单页的前进后退. var UserRouter = Backbone.Router.extend({ routes: ...
- AJPFX总结Collection集合(上)
出现集合类的原因 面向对象语言对事物的体现都是以对象的形式,所以为了方便对多个对象的操作,就对对象进行存储,集合就是存储对象最常用的一个方式. 数组和集合都是容器有何不同? 数组虽也可存储对象,但长度 ...
- python中一些函数应用
items将一个字典以列表的形式返回,因为字典是无序的,所以返回的列表也是无序的. 例如:a = {"a":1,"b":2} a.items 就是 a ...
- ag-grid-vue的 行默认选中
that.$nextTick(() => { that.gridListOptions.api.onGroupExpandedOrCollapsed(); that.$nextTick(() = ...
- android xml中使用include标签
在一个项目中,我们可能会在xml中局部用到相同的布局,如果每次都在xml中重写这些布局,代码显得很冗余.重复的复制黏贴也很烦恼,所以,我们把这些相同的局部布局写成一个单独的xml模块,需要用到这些布局 ...
- 编译安装LAMP之php(fpm模块)
一,准备工作实验平台为CentOS6.6,先下载所需的安装包,我使用的是php-5.4.26.tar.gz,下载地址 http://mirrors.sohu.com/php/ 编译安装的目录:/usr ...
- [Windows Server 2012] 安装IIS8.5及FTP
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:安装IIS ...
- 如何用Chrome自带的截屏功能截取超过一个屏幕的网页
提升程序员工作效率的工具/技巧推荐系列 推荐一个功能强大的文件搜索工具SearchMyFiles 介绍一个好用的免费流程图和UML绘制软件-Diagram Designer 介绍Windows任务管理 ...