Timus 1146. Maximum Sum
1146. Maximum Sum
Memory limit: 64 MB
0 | −2 | −7 | 0 |
9 | 2 | −6 | 2 |
−4 | 1 | −4 | 1 |
−1 | 8 | 0 | −2 |
Input
Output
Sample
input | output |
---|---|
4 |
15 |
最大子矩阵。很经典的问题哈哈
压缩 然后最大连续子序列 dp[i]=dp[i-1]<0?a[i]:dp[i-1]+a[i]
一开始压缩的时候没用前缀和,n^4 貌似过不了,后来用前缀和优化到n^3
下面代码中dp 的空间也可以优化,这里没有优化.
/* ***********************************************
Author :guanjun
Created Time :2016/10/7 13:50:13
File Name :timus1146.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
int a[][],n;
int sum[][];
int dp[];
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
while(scanf("%d",&n)!=EOF){
cle(sum);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&a[i][j]);
sum[i][j]=sum[i][j-]+a[i][j];
}
}
int Max=-INF;
//dp 求最大连续子序列 dp[i]代表以i为结尾的最大连续子序列的长度
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
cle(dp);
for(int k=;k<=n;k++){
int tmp=sum[k][i]-sum[k][j-];
if(dp[k-]<){
dp[k]=tmp;
}
else dp[k]=tmp+dp[k-];
Max=max(dp[k],Max);
}
}
}
cout<<Max<<endl;
}
return ;
}
Timus 1146. Maximum Sum的更多相关文章
- ural 1146. Maximum Sum
1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...
- 最大子矩阵和 URAL 1146 Maximum Sum
题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...
- ural 1146. Maximum Sum(动态规划)
1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...
- URAL 1146 Maximum Sum(最大子矩阵的和 DP)
Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...
- URAL 1146 Maximum Sum(DP)
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the large ...
- URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)
点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...
- URAL 1146 Maximum Sum 最大子矩阵和
题目:click here #include <bits/stdc++.h> using namespace std; typedef unsigned long long ll; con ...
- POJ2479 Maximum sum[DP|最大子段和]
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39599 Accepted: 12370 Des ...
- UVa 108 - Maximum Sum(最大连续子序列)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
随机推荐
- (转) 淘淘商城系列——使用SolrJ查询索引库
http://blog.csdn.net/yerenyuan_pku/article/details/72908538 我们有必要在工程中写查询索引库的代码前先进行必要的测试.我们先到Solr服务页面 ...
- (转)淘淘商城系列——使用Jedis操作集群
http://blog.csdn.net/yerenyuan_pku/article/details/72862084 通过上文的学习,我相信大家应该已经知道如何搭建Redis集群了,本文我将为大家介 ...
- UI布局只关乎三件事情:尺寸、位置、组织
UI布局只关乎三件事情:尺寸.位置.组织. 组织分为两类: 单元组织: 集合组织: 混合组织.
- 崩溃通常是指操作系统向正在运行的程序发送的信号-EXC_BAD_ACCESS是信号
https://www.cnblogs.com/feng9exe/p/7243628.html
- SpringBoot开源项目学习总结
一.实现日期格式数据类型的转换 首先,定义DateConverter实现Converter<String, Date>接口: package com.stevlu.common; impo ...
- 关于iframe与$.load()哪个更好
iframe与$.load()哪个更好 iframe可以直接加载页面,但是要付出降低搜索引擎搜索效率的代价,它引入静态文件的方式是完全独立的,简单意思就是,在页面一(父级页面)用ifram ...
- Script:shell脚本生成随机字符串
#!/bin/bash # bash generate random alphanumeric string # # bash generate random character alphanumer ...
- 洛谷——P1120 小木棍 [数据加强版]
P1120 小木棍 [数据加强版] 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过5050. 现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍 ...
- Centos下Yum安装PHP5.5,5.6,7.0及扩展
默认的版本太低了,手动安装有一些麻烦,想采用Yum安装的可以使用下面的方案: 1.检查当前安装的PHP包 yum list installed | grep php 如果有安装的PHP包,先删除他们 ...
- Jmeter BeanShell PreProcessor使用笔记
打印log log.info("content:" + content); 将字符串转化为JsonString import com.alibaba.fastjson.JSON; ...