# 题目大意

给出区间 $[a,b]$,求出区间中有多少数满足下列两个条件

  • 不含有前导 $0$。
  • 相邻两个数字之差的绝对值至少是 $2$。

# 解题思路

数位 $DP$,用记忆化搜索来实现。设 $dp[i][j]$ 表示现在已经枚举到第 $i$ 位,第 $i+1$ 位是 $j$ 时一共有多少满足条件的数。

还是直接看代码里的注释吧。

# 放上代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int HA = ;
//这里要设置为233,不能设置为int_max,会炸
int n, m, dp[][], num[];
inline int Abs(int x) {
return x> ? x : -x;
}
inline int dfs(int l, int pre, bool limit, bool Zero) {
if(l == ) return ;
//如果所有的位置都枚举完了,这显然就是一种可行方案
if(!Zero && !limit && dp[l][pre]) return dp[l][pre];
//没有前导0和限制是才能用通用答案
int ans = , mx = limit ? num[l] : ;
for(int i=; i<=mx; i++) {
if(Abs(i-pre) < ) continue;
int tmp = (i== && Zero) ? -HA : i;
//如果有前导0并且现在这一位是0,那就设置为一个负数
ans += dfs(l-, tmp, limit && (i == mx), tmp==-HA);
//前面的位有限制并且这一位到达了最高的数字那么限制就可以传递给下一位
}
if(!limit && !Zero) dp[l][pre] = ans;
//没有限制没有前导0才能够成为通用的答案
return ans;
}
inline int solve(int x) {
//将x分解
memset(num, , sizeof(num));
int k = ;
while (x) {
num[++k] = x % ;
x /= ;
}
return dfs(k, -HA, true, true); //第k位之前的一定是前导0
}
int main() {
scanf("%d%d", &n, &m);
printf("%d", solve(m)-solve(n-)); //类似前缀和
}

「 Luogu P2657 」 windy数的更多相关文章

  1. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  2. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  3. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

  4. P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...

  5. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  6. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  7. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  8. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  9. [洛谷P2657][SCOI2009]windy数

    题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...

随机推荐

  1. Ordeby then by

    先按orderby排序,再按thenby排序 return PartialView("_ClickRangeOnCategory", articles.OrderByDescend ...

  2. Ruby - 创建自己的GEM

    Log 1 创建自己的gem 背景:好奇gem包的用法,首先搞清楚什么是gem包.那我们就先来创建一个自己的gem包. 时间:2014-3-8 环境:Ubuntu + Ruby 1.9.3 记录:Ro ...

  3. html语义化与前端页面排版规则

    1.使用div进行布局,不要用div进行无意义的包裹  span行内常见元素 2.可以使用div和p的情况下,尽量用p.p有默认上下间隔字体加粗等,可以对终端有适配 3.需要强调的文本,可以包含在st ...

  4. Mybatis的全局配置文件标签介绍(mybatis-config.xml)

    全局配置文件中本人只记录了常用的几个  typeHandlers, objectFactory,objectWrapperFactory, reflectorFactory, plugins, dat ...

  5. BZOJ 3224 SBT 普通平衡树

    复习了一下SBT的模板,但是BZOJ不知道为什么注册不了,所以就没交,测了样例能过! #include <bits/stdc++.h> #include<algorithm> ...

  6. 二分查找/暴力 Codeforces Round #166 (Div. 2) B. Prime Matrix

    题目传送门 /* 二分查找/暴力:先埃氏筛选预处理,然后暴力对于每一行每一列的不是素数的二分查找最近的素数,更新最小值 */ #include <cstdio> #include < ...

  7. ES6的新方法实现数组去重

    ES6里新添加了两个很好用的东西,set和Array.from. set是一种新的数据结构,它可以接收一个数组或者是类数组对象,自动去重其中的重复项目. 在这我们可以看见,重复的项目已经被去掉了,包括 ...

  8. [书目20150303]软件工程的本质:运用SEMAT内核

    译者序Robert Martin作序Bertrand Meyer作序Richard Soley作序前言致谢第一部分   内核思想解释第1章   简要介绍如何使用内核1.1   为什么开发优秀软件具有很 ...

  9. [书目20141009]《ReWork》

    ReWork1: ============= 引言篇INTRODUCTION开局篇FIRST 新的现实缷负篇TAKEDOWNS 忘了“现实世界” 哪来的从错误中学习 计划即瞎猜 何必壮大? 工作狂 受 ...

  10. String的用法——转换功能

    package cn.itcast_05; /* String类的转换功能: byte[] getByte():把字符串转换成字节数组 复习: public String(byte[] bytes): ...