红黑树(Red-Black Tree)

  • 红黑树是一种BST,但是每个节点上增加一个存储位表示该节点的颜色(R或者B);通过对任何一条从root到leaf的路径上节点着色方式的显示,红黑树确保所有路径的差值不会超过一倍,最终使得BST接近平衡;
  • 红黑树内每个节点包含五个属性:color, key, left, right和p,p表示指向父亲节点的指针;一棵BST需要同时满足下述五个性质才能称作红黑树:

    每个节点只能是红色或者黑色节点中的一种;

    根节点必须是黑色;

    每个叶节点(NULL)必须是黑色;

    如果一个节点是红色,则它的两个子节点必须是黑色;

    对于树中任何一个节点,该节点到其叶节点的所有路径上的黑色节点数相同

  • 红黑树的空间复杂度为O(N);支持三种操作:search, insert, delete,并且所有操作的时间复杂度都为O(logN),最好情况跟最坏情况的复杂度相同。对于search操作而言,其依赖BST的性质,所以不需 要依赖节点的着色信息;着色信息仅为了保证BST的平衡性,insert和delete操作则可能破坏BST的平衡性,所以这两种操作需要对红黑树中节点 的着色信息进行调整。
     
 //左旋操作中,oldroot的右子节点成为新的root,root的左子节点成为oldroot的右子节点,
//oldroot成为新root的左子节点
template <class KeyType>
void Node<KeyType>::RotateLeft(Node<KeyType> * & root) {
Node<KeyType> * oldRoot = root;
root = root->mySubtree[RIGHT];
oldRoot->mySubtree[RIGHT] = root->mySubtree[LEFT];
root->mySubtree[LEFT] = oldRoot;
} //右旋操作中,oldroot的左子节点成为新的root,root的右子节点成为oldroot的左子节点,
//oldroot成为新root的右子节点
template <class KeyType>
void Node<KeyType>::RotateRight(Node<KeyType> * & root) {
Node<KeyType> * oldRoot = root;
root = root->mySubtree[LEFT];
oldRoot->mySubtree[LEFT] = root->mySubtree[RIGHT];
root->mySubtree[RIGHT] = oldRoot;
} //向T索引的红黑树中插入新节点z,使用BST的性质查找z的插入位置,并且将新节点z标
//注为红色;
RB-INSERT(T, z)
y ← nil[T]
x ← root[T]
while x ≠ nil[T]
do y ← x
if key[z] < key[x]
then x ← left[x]
else x ← right[x]
p[z] ← y
if y = nil[T]
then root[T] ← z
else if key[z] < key[y]
then left[y] ← z
else right[y] ← z
left[z] ← nil[T]
right[z] ← nil[T]
color[z] ← RED
RB-INSERT-FIXUP(T, z)

插入一个节点并标注为红色的操作可能破坏红黑树的性质2和性质4;当插入节点为根节点的时候破坏性质2,此时直接将其变成黑色就可以恢复;当破坏性质4的时候则需要一系列的恢复操作;
case1:原树为空,新节点为根节点;恢复策略为将其改成黑色;
case2:新节点的父节点是黑色;满足所有红黑树规则;
case3:新节点的父节点是红色,父节点的兄弟节点是红色;恢复策略为将新节点的父节点和父节点的兄弟节点改成黑色,其祖父节点改成红色,针对祖父节点重新调用该方法;
case4:新节点的父节点是红色,父节点的兄弟节点是黑色,新节点为父节点的右子;恢复策略为以新节点的父节点为支点左旋;
case5:新节点的父节点是红色,父节点的兄弟节点是黑色,新节点为父节点的左子;恢复策略为将新节点的父节点改成黑色,祖父节点改成红色,并以祖父节点为支点右旋;

 RB-INSERT-FIXUP(T, z)
while color[p[z] = RED
do if p[z] = left[p[p[z]]
then y ← right[p[p[z]]
if color[y] = RED
then color[p[z] ← BLACK ▹ Case
color[y] ← BLACK ▹ Case
color[p[p[z]] ← RED ▹ Case
z ← p[p[z] ▹ Case
else if z = right[p[z]
then z ← p[z] ▹ Case
LEFT-ROTATE(T, z) ▹ Case
color[p[z] ← BLACK ▹ Case
color[p[p[z]] ← RED ▹ Case
RIGHT-ROTATE(T, p[p[z]) ▹ Case
else (same as then clause with "right" and "left" exchanged)
color[root[T] ← BLACK //
RB-DELETE(T, z)
if left[z] = nil[T] or right[z] = nil[T]
then y ← z
else y ← TREE-SUCCESSOR(z)
if left[y] ≠ nil[T]
then x ← left[y]
else x ← right[y]
p[x] ← p[y]
if p[y] = nil[T]
then root[T] ← x
else if y = left[p[y]
then left[p[y] ← x
else right[p[y] ← x
if y ≠ z
then key[z] ← key[y]
copy y's satellite data into z
if color[y] = BLACK
then RB-DELETE-FIXUP(T, x)
return y

case1:x的兄弟w是红色
case2:x的兄弟w是黑色,并且w的两个孩子是黑色
case3:x的兄弟w是黑色,并且w的左孩子是红色,w的右孩子是黑色
case4:x的兄弟w是黑色,并且w的右孩子是红色

 RB-DELETE-FIXUP(T, x)
while x ≠ root[T] and color[x] = BLACK
do if x = left[p[x]
then w ← right[p[x]
if color[w] = RED
then color[w] ← BLACK ▹ Case
color[p[x] ← RED ▹ Case
LEFT-ROTATE(T, p[x]) ▹ Case
w ← right[p[x] ▹ Case
if color[left[w] = BLACK and color[right[w] = BLACK
then color[w] ← RED ▹ Case
x ← p[x] ▹ Case
else if color[right[w] = BLACK
then color[left[w] ← BLACK ▹ Case
color[w] ← RED ▹ Case
RIGHT-ROTATE(T, w) ▹ Case
w ← right[p[x] ▹ Case
color[w] ← color[p[x] ▹ Case
color[p[x] ← BLACK ▹ Case
color[right[w] ← BLACK ▹ Case
LEFT-ROTATE(T, p[x]) ▹ Case
x ← root[T] ▹ Case
else (same as then clause with "right" and "left" exchanged)
color[x] ← BLACK

笔试算法题(51):简介 - 红黑树(RedBlack Tree)的更多相关文章

  1. [Data Structure] 红黑树( Red-Black Tree ) - 笔记

    1.  红黑树属性:根到叶子的路径中,最长路径不大于最短路径的两倍. 2. 红黑树是一个二叉搜索树,并且有 a. 每个节点除了有左.右.父节点的属性外,还有颜色属性,红色或者黑色. b. ( 根属性 ...

  2. [转]SGI STL 红黑树(Red-Black Tree)源代码分析

    STL提供了许多好用的数据结构与算法,使我们不必为做许许多多的重复劳动.STL里实现了一个树结构-Red-Black Tree,它也是STL里唯一实现的一个树状数据结构,并且它是map, multim ...

  3. 红黑树red-black tree

    书籍:<算法导论>第13章 红黑树性质:1. 每个节点要么red要么black.2. 根节点是black节点.3. 叶子节点是black节点.4. red节点的左右儿子节点都是black节 ...

  4. 红黑树(Red-Black Tree),B树,B-树,B+树,B*树

    (一)红黑树(Red-Black Tree) http://www.cnblogs.com/skywang12345/p/3245399.html#a1 它一种特殊的二叉查找树.红黑树的每个节点上都有 ...

  5. 红黑树( Red-Black Tree ) - 笔记

    1.  红黑树属性:根到叶子的路径中,最长路径不大于最短路径的两倍. 2. 红黑树是一个二叉搜索树,并且有 a. 每个节点除了有左.右.父节点的属性外,还有颜色属性,红色或者黑色. b. ( 根属性  ...

  6. 红黑树(Red-Black Tree)

    概念解析: 红黑树是一种自平衡二叉查找树(self-balancing binary search tree).因此,红黑树本身就是二叉树的一个变种.典型的用途是实现关联数组(Associative ...

  7. 手撸红黑树-Red-Black Tree 入门

    一.学习红黑树前的准备: 熟悉基础数据结构 了解二叉树概念 二.红黑树的规则和规则分析: 根节点是黑色的 所有叶子节点(Null)是黑色的,一般会认定节点下空节点全部为黑色 如果节点为红色,那么子节点 ...

  8. 笔试算法题(47):简介 - B树 & B+树 & B*树

    B树(B-Tree) 1970年由R. Bayer和E. Mccreight提出的一种适用于外查找的树,一种由BST推广到多叉查找的平衡查找树,由于磁盘的操作速度远小于存储器的读写速度,所以要求在尽量 ...

  9. Java数据结构和算法(十一)——红黑树

    上一篇博客我们介绍了二叉搜索树,二叉搜索树对于某个节点而言,其左子树的节点关键值都小于该节点关键值,右子树的所有节点关键值都大于该节点关键值.二叉搜索树作为一种数据结构,其查找.插入和删除操作的时间复 ...

随机推荐

  1. Java 支持JavaScript脚本计算

    Java支持了JavaScript脚本的执行计算能力: import javax.script.Invocable; import javax.script.ScriptEngine; import ...

  2. Mysql数据库的触发器、存储引擎和存储过程

    数据库的触发器 1.触发器 触发器是MySQL响应以下任意语句而自动执行的一条MySQL语句(或位于BEGIN和END语句之间的一组语句): DELETE,INSERT,UPDATE 我们可以监视某表 ...

  3. H5的draggable属性和jqueryUI.sortable

    拖放 拖放是一种常见的特性,即抓取对象以后拖到另一个位置. 一.HTML5 新特性 在 HTML5 中,拖放是标准的一部分,任何元素都能够拖放. Event On Event Handler 描述 d ...

  4. JAVA中抽象类不可以实例化,却可以创建数组

    这是我定义的一个抽象类: 如果你试图创建一个对象,当然是不行的,抽象类不能用new运算符创建对象. 这是错误提示,还记得instantiate这个单词吗?在我的这篇随笔第二篇(那些JAVA程序BUG中 ...

  5. htm 与 html 的区别

    htm 与 html 的区别 前者是超文本标记(Hypertext Markup) 后者是超文本标记语言(Hypertext Markup Language) 可以说 htm = html 同时,这两 ...

  6. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  7. 洛谷 P2742 [USACO5.1]圈奶牛Fencing the Cows || 凸包模板

    整篇都是仅做记录... 蓝书上的板子.水平序,单调栈.先求下凸包,再求上凸包.叉积的作用是判定向量的位置关系. 48行的作用是在求上凸包的时候不至于去删下凸包中的点.上凸包中第一个点被认为是t1. 另 ...

  8. AsyncTask官方教程-推荐用AsyncTask少用Thread

    Using AsyncTask AsyncTask allows you to perform asynchronous work on your user interface. It perform ...

  9. javascript中函数的四种调用模式详解

    介绍函数四种调用模式前,我们先来了解一下函数和方法的概念,其实函数和方法本质是一样,就是称呼不一样而已.函数:如果一个函数与任何对象关系,就称该函数为函数.方法:如果一个函数作为一个对象属性存在,我们 ...

  10. APK瘦身-是时候给App进行减负了

    前言 APK瘦身即是对APK大小进行压缩策略,减小APK安装包大小,更小的安装包更有助于吸引用户安装.前一段时间我司某一App进行APK的瘦身,最终也达到了减小10M的目标,现做一个简单的总结记录. ...