题目描述
对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。
输入输出格式
输入格式:
输入文件只有一行,且只有一个整数N 输出格式:
输出划分方案总数,如果不存在则输出0。 输入输出样例
输入样例#1:
7
输出样例#1:
4
说明
翻译来自NOCOW USACO 2.2

第一反应是(n+1)/2,但仔细一想显然不对。

考虑什么情况不能分开,因为一定是分成两部分,所以当Si%2!=0时,就出问题了。

Si正好是三角形数,等于n(n+1)/2。

判断了不行的情况,再看行的情况。

由于是分成两块,所以每块大小一定是Si/2。

这正是一个背包模型,物品大小为1,2,3,…,n,背包容量为Si/2,跑一次背包计数即可。

#include<iostream>
#include<cstdio> using namespace std; int n;
long long f[400]; int main()
{
cin>>n;
if((n*(n+1))%4!=0) return cout<<0,0;
int V=(n*(n+1))/4;
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=V;j>=0;j--){
int p=j-i;
if(p<0) break;
f[j]+=f[p];
}
}
cout<<f[V]/2;
}

[LUOGU] P1466 集合 Subset Sums的更多相关文章

  1. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  2. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  3. 洛谷 P1466 集合 Subset Sums Label:DP

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  4. P1466 集合 Subset Sums(01背包求填充方案数)

    题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...

  5. P1466 集合 Subset Sums 搜索+递推+背包三种做法

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  6. 题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】

    题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集 ...

  7. 洛谷P1466 集合 Subset Sums_01背包水题

    不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int ma ...

  8. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  9. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. Swift4 函数, 元组, 运算符

    创建: 2018/02/19 完成: 2018/02/19 更新: 2018/02/25 修改标题 [Swift4 函数] -> [Swift4 函数, 元组, 运算符] 更新 :2018/03 ...

  2. bzoj 4078: [Wf2014]Metal Processing Plant【二分+2-SAT+枚举+并查集】

    枚举从大到小s1,二分s2(越大越有可能符合),2-SAT判断,ans取min 思路倒是挺简单的,就是二分的时候出了比较诡异的问题,只能二分s2的值,不能在数组上二分... 有个优化,就是当不是二分图 ...

  3. 使用gitee(码云)创建项目

    注册登录 https://gitee.com/ 也可以直接用oschina的帐号. 创建项目 点击"+"号,创建项目. 执行git命令 本机创建一个你的这个项目目录,init后不要 ...

  4. git介绍及安装

    git介绍 git是一个开源的分布式版本控制系统,用于敏捷高效的处理任何或大或小的项目.git是linus Torvalds为了帮助管理Linux内核开发的一个开放源码的版本控制软件. Git 与常用 ...

  5. Oracle10g初探DBCA

    Database Configuration Assistant. [oracle@dbsrv3 bin]$ pwd /opt/oracle//bin [oracle@dbsrv3 bin]$ ./d ...

  6. 如何移除EditText自动焦点

    <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_cont ...

  7. 关于c头文件的使用的小记录

    在用visual studio实现数据结构上的一些结构与算法的时候,想在一个工程中建立几个文件,然后主文件可以使用其他文件的函数与变量(比如定义的结构体还有数据结构接口函数).  我们可以利用头文件来 ...

  8. 172 Factorial Trailing Zeroes 阶乘后的零

    给定一个整数 n,返回 n! 结果尾数中零的数量.注意: 你的解决方案应为对数时间复杂度. 详见:https://leetcode.com/problems/factorial-trailing-ze ...

  9. [转]F# Samples 101 - Visual Studio 2010

    http://code.msdn.microsoft.com/F-Samples-101-0576cb9f/sourcecode?fileId=18956&pathId=1045958806 ...

  10. Linux之测试服务器和端口连通

    目录 wget工具 telnet工具 ssh工具 wget工具: 该工具是网络自动下载工具,如果linux或centos中不存在,需要先安装,支持http.https.ftp协议,wget名称的由来是 ...