[LUOGU] P1466 集合 Subset Sums
题目描述
对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:
{3} 和 {1,2}
这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:
{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。
输入输出格式
输入格式:
输入文件只有一行,且只有一个整数N
输出格式:
输出划分方案总数,如果不存在则输出0。
输入输出样例
输入样例#1:
7
输出样例#1:
4
说明
翻译来自NOCOW
USACO 2.2
第一反应是(n+1)/2,但仔细一想显然不对。
考虑什么情况不能分开,因为一定是分成两部分,所以当Si%2!=0时,就出问题了。
Si正好是三角形数,等于n(n+1)/2。
判断了不行的情况,再看行的情况。
由于是分成两块,所以每块大小一定是Si/2。
这正是一个背包模型,物品大小为1,2,3,…,n,背包容量为Si/2,跑一次背包计数即可。
#include<iostream>
#include<cstdio>
using namespace std;
int n;
long long f[400];
int main()
{
cin>>n;
if((n*(n+1))%4!=0) return cout<<0,0;
int V=(n*(n+1))/4;
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=V;j>=0;j--){
int p=j-i;
if(p<0) break;
f[j]+=f[p];
}
}
cout<<f[V]/2;
}
[LUOGU] P1466 集合 Subset Sums的更多相关文章
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- 洛谷 P1466 集合 Subset Sums Label:DP
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- P1466 集合 Subset Sums(01背包求填充方案数)
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...
- P1466 集合 Subset Sums 搜索+递推+背包三种做法
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- 题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】
题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集 ...
- 洛谷P1466 集合 Subset Sums_01背包水题
不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int ma ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
随机推荐
- 使用oracle的保留字作为字段名称并进行操作的方法
项目中调取业主的数据库时发现,其中一个表的一个字段名为:update,所以当我用数据库查询语句进行查询的时候总会出错.从网上查询之后发现原来很简单,只要把update加上双引号就好了,例如: sele ...
- Java使用动态代理实现AOP
参考资料: http://www.importnew.com/15420.htmlhttp://www.cnblogs.com/techyc/p/3455950.html Spring是借助了动态代理 ...
- undefined reference to 'pthread_create'问题解决(转载)
转自:http://blog.csdn.net/llqkk/article/details/2854558 由于是Linux新手,所以现在才开始接触线程编程,照着GUN/Linux编程指南中的一个例子 ...
- bzoj 1923: [Sdoi2010]外星千足虫【高斯消元】
裸的异或高斯消元 #include<iostream> #include<cstdio> using namespace std; const int N=2005; int ...
- [CF997E] Good SubSegment
Description Transmission Gate 给你一个长度为n的排列P,定义一段子区间是好的,当且仅当这个子区间内的值构成了连续的一段.例如对于排列\(\{1,3,2\}\),\([1, ...
- VK Cup 2018 - Round 1 A. Primal Sport
A. Primal Sport time limit per test 1.5 seconds memory limit per test 256 megabytes input standard i ...
- matlab实现算术编解码 分类: 图像处理 2014-06-01 23:01 357人阅读 评论(0) 收藏
利用Matlab实现算术编解码过程,程序如下: clc,clear all; symbol=['abc']; pr=[0.4 0.4 0.2]; %各字符出现的概率 temp=[0.0 0.4 0.8 ...
- synchronized(2)修饰方法之:普通方法
synchronized方法 [同一个对象的该方法一次只有一个线程可以访问,该对象的其它同步方法也被阻塞] 方法声明时使用,放在范围操作符(public等)之后,返回类型声明(void等)之前.这时, ...
- hdu3436Queue-jumpers(线段树)
链接 这题最不好求的一部分是rank部分 因为top每次都是把一个数放在队头 不会穿插在数组里 也就是说后面没有top过的一部分数 依旧保持有序 这样可以分为两部分来处理 比如 1 2 3 4 5 6 ...
- 外文翻译 《How we decide》 Introduction
书籍PDF版地址:How we decide 本文为书籍导言部分的拙劣翻译. 当我驾驶着波音737驶向东京成田国际机场时,飞机的引擎突然起火了.此时我们正处于7000英尺的高空,机场的跑道就在不远的前 ...