poj3233Matrix Power Series
也是矩阵经典题目 二分递归求解
a+a^2+a^3+..+a^(k/2)+a^(k/2+1)+...+a^k = a+a^2+..+a^k/2+a^k/2(a^1+a^2+..+a^k/2)(偶数)
a+a^2+a^3+..+a^(k/2)+a^(k/2+1)+...+a^k = a+a^2+..+a^k/2+a^k/2(a^1+a^2+..+a^k/2)+a^k。 奇数
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 1e9
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct Mat
{
int mat[][];
};
int n,mod;
Mat operator + (Mat a,Mat b)
{
Mat c;
int i,j;
for(i = ; i < n ;i++)
for(j = ;j < n ;j++)
{
if(a.mat[i][j]+b.mat[i][j]>mod)
c.mat[i][j] = (a.mat[i][j]+b.mat[i][j])%mod;
else
c.mat[i][j] = a.mat[i][j]+b.mat[i][j];
}
return c;
}
Mat operator * (Mat a,Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
int i,j,k;
for(k = ; k < n ; k++)
{
for(i = ; i < n ;i++)
{
if(a.mat[i][k]==) continue;
for(j = ;j < n ;j++)
{
if(b.mat[k][j]==) continue;
c.mat[i][j] = (c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%mod;
}
}
}
return c;
}
Mat operator ^(Mat a,int k)
{
Mat c;
int i,j;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
c.mat[i][j] = (i==j);
for(; k ;k >>= )
{
if(k&) c = c*a;
a = a*a;
}
return c;
}
Mat solve(Mat x,int k)
{
if(k==) return x;
Mat c ;
c = x^k;
Mat a = solve(x,k/);
Mat b = x^(k/);
if(k&) c = a+b*a+c;
else c = a+b*a;
return c;
}
int main()
{
int t;
int i,j;
while(scanf("%d%d%d",&n,&t,&mod)!=EOF)
{
Mat x;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
scanf("%d",&x.mat[i][j]);
x = solve(x,t);
for(i = ; i < n ;i++)
{
for(j = ; j < n-; j++)
printf("%d ",x.mat[i][j]%mod);
printf("%d\n",x.mat[i][n-]%mod);
}
}
return ;
}
poj3233Matrix Power Series的更多相关文章
- POJ3233Matrix Power Series(十大矩阵问题之三 + 二分+矩阵快速幂)
http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total ...
- poj3233Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 23187 Accepted: ...
- POJ3233Matrix Power Series(矩阵快速幂)
题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...
- C++-POJ3233-Matrix Power Series[矩阵乘法][快速幂]
构造矩阵 #include <cstdio> ; struct Matrix{int a[MAXN][MAXN];}O,I;int N; ;i<MAXN;i++);j<MAXN ...
- POJ 3233Matrix Power Series
妈妈呀....这简直是目前死得最惨的一次. 贴题目: http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Mem ...
- MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- 线性代数(矩阵乘法):POJ 3233 Matrix Power Series
Matrix Power Series Description Given a n × n matrix A and a positive integer k, find the sum S = ...
- C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速
Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...
- POJ 3233 Matrix Power Series(二分等比求和)
Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...
随机推荐
- leetcode ----Trie/stack专题
一:Implement Trie (Prefix Tree) 题目: Implement a trie with insert, search, and startsWith methods. Not ...
- ubuntu 安装后要做的事情
1. 安装chrome,软件中心就可以. 2. 安装vim 和一些插件.这里引入一大牛配置的插件集 sudo apt-get install vim-gtk wget -qO- https://raw ...
- SQL Server索引原理解析
此文是我之前的笔记整理而来,以索引为入口进行探讨相关数据库知识(又做了修改以让人更好消化).SQL Server接触不久的朋友可以只看以下蓝色字体字,简单有用节省时间:如果是数据库基础不错的朋友,可以 ...
- encodeURIComponent
<script type="text/javascript"> function show(){ var f="#wer中文测试"; f = enc ...
- 2016/05/16 UEditor 文本编辑器 使用教程与使用方法
第一:百度UEditor编辑器的官方下载地址 ueditor 官方地址:http://ueditor.baidu.com/website/index.html 开发文档地址:http://uedito ...
- Django模板语言(一)
1,Django模板语言 1.1>基础语法:1.1.1,变量相关:{{ 变量名 }},1.1.2,逻辑相关{% ... %} 在Django模板语言中按此语法使用:{{ 变量名 }},当模板引擎 ...
- 使用jdbc对mysql进行增删改查
建立数据库和数据表 CREATE DATABASE `mysqlTest` DEFAULT CHARACTER SET utf8; CREATE TABLE `test` ( `id` ) NOT N ...
- YTU 2596: 编程题B-日期格式
2596: 编程题B-日期格式 时间限制: 1 Sec 内存限制: 128 MB 提交: 981 解决: 74 题目描述 注:本题只需要提交编写的函数部分的代码即可. 将输入的日期格式 月/日/年 ...
- 并不对劲的字符串专题(二):kmp
据说这些并不对劲的内容是<信息学奥赛一本通提高篇>的配套练习. 先感叹一句<信息学奥赛一本通提高篇>上对kmp的解释和matrix67的博客相似度99%(还抄错了),莫非mat ...
- bzoj4289 PA2012 Tax——点边转化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 好巧妙的转化!感觉自己难以想出来... 参考了博客:https://blog.csdn ...