【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)
【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)
题面
题解
很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\)。
那么怎么求解每个集合的\(min\)呢。
显然以起点为根节点,如果点集中一个点在另外一个点的子树内,显然不需要考虑,索性丢掉。考虑剩下的点,把他们的子树丢掉(要访问子树肯定要访问到某个点),那么剩下的点直接扣下来做一个高斯消元就可以求出到达每个点的期望,那么\(min\)就求出来。
设\(f[S]\)表示点集\(S\)在以\(x\)为根的时候的\(min\)。这个东西直接预处理的话,复杂度是\(O(2^n n^3)\),
然而我们并不需要裸的高斯消元,树上的高斯消元是可以做到\(O(n)\)的。大概就是叶子节点可以表示成只含有父亲的一个一次函数,把这个东西带到其父亲的方程中消去这个叶子节点,这样子就少了一个元,可以做到线性。
啥?方程不会列?设\(f[i]\)表示从当前点\(i\)到达一个最近的点集中的点的期望。$\displaystyle f[u]=1+\frac{1}{d}\sum_{v,(u,v)\in E}f[v] $。然后点集中的点特殊处理一下。
然后就没了
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
struct Line{int v,next;}e[40];
int h[20],cnt=1,dg[20];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;++dg[u];}
int n,Q,r,All,a[1<<18],bul[1<<18];
int k[20],b[20];
void dfs(int u,int ff,int S)
{
if(S&(1<<u)){k[u]=b[u]=0;return;}
int sk=0,sb=0;
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff)
dfs(e[i].v,u,S),sk=(sk+k[e[i].v])%MOD,sb=(sb+b[e[i].v])%MOD;
k[u]=fpow((dg[u]-sk+MOD)%MOD,MOD-2);
b[u]=1ll*k[u]*(sb+dg[u])%MOD;
}
int main()
{
n=read();Q=read();r=read()-1;All=(1<<n)-1;
for(int i=1;i<n;++i)
{
int u=read()-1,v=read()-1;
Add(u,v);Add(v,u);
}
for(int i=1;i<=All;++i)bul[i]=bul[i>>1]+(i&1);
for(int i=1;i<=All;++i)dfs(r,-1,i),a[i]=b[r];
for(int i=1;i<=All;++i)if(!(bul[i]&1))a[i]=(MOD-a[i])%MOD;
for(int i=1;i<=All;i<<=1)
for(int p=i<<1,j=0;j<=All;j+=p)
for(int k=0;k<i;++k)
a[i+j+k]=(a[i+j+k]+a[j+k])%MOD;
while(Q--)
{
int S=0,t=read();
while(t--)S|=1<<(read()-1);
printf("%d\n",a[S]);
}
return 0;
}
【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)的更多相关文章
- LOJ #2542 [PKUWC2018]随机游走 (概率期望、组合数学、子集和变换、Min-Max容斥)
很好很有趣很神仙的题! 题目链接: https://loj.ac/problem/2542 题意: 请自行阅读 题解首先我们显然要求的是几个随机变量的最大值的期望(不是期望的最大值),然后这玩意很难求 ...
- [LOJ#2542] [PKUWC2018] 随机游走
题目描述 给定一棵 n 个结点的树,你从点 x 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 Q 次询问,每次询问给定一个集合 S,求如果从 x 出发一直随机游走,直到点集 S 中所有点都 ...
- 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)
点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...
- 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)
题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
- [PKUWC2018] 随机游走
Description 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 ...
- LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望
传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...
- 题解-PKUWC2018 随机游走
Problem loj2542 题意:一棵 \(n\) 个结点的树,从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去,询问走完一个集合 \(S\)的期望时间,多组询问 \(n\le ...
- LOJ2542 PKUWC2018随机游走(概率期望+容斥原理)
如果直接dp,状态里肯定要带上已走过的点的集合,感觉上不太好做. 考虑一种对期望的minmax容斥:其中Max(S)为遍历完S集合的期望步数,Min(S)为遍历到S集合中一个点的期望步数.当然才不管怎 ...
随机推荐
- iRate---一个跳转AppStore评分弹窗
https://www.aliyun.com/jiaocheng/357479.html 摘要:gitHub地址:https://github.com/nicklockwood/iRate可以通过配置 ...
- [2017BUAA软工助教]个人项目测试结果
个人项目测试结果 标签(空格分隔): 未分类 9.29第一次测试结果 注:点击表头内相应项目可针对该项目进行排序 -c测试结果 INDEX NumberID -c 1 -c 5 -c 100 -c 5 ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺
Deadline: 2018-5-31 22:00PM,以博客提交至班级博客时间为准 根据以下要求: (1)在敏捷冲刺前发布一篇博客,作为beta版敏捷冲刺的开始, (2)同时,团队在日期区间[5.2 ...
- 将iso镜像转换为docker镜像
为什么不用官方的镜像? 不是不想使用,而是官方镜像提供的功能实在是太少了,不信的话,你pull一个ubuntu:latest的进行,你看有没有wget.curl.ssh这些功能,就连最简单的ifcon ...
- Centos 6.x 升级到 7.x
Centos6.5跨越大版本升级到Centos7.4 - Linux学习与应用 - CSDN博客https://blog.csdn.net/whbttst/article/details/805348 ...
- Non-Volatile Register 非易失性寄存器 调用约定对应寄存器使用
非易失性寄存器(Non-volatile register)是它的内容必须通过子程序调用被保存的一个寄存器.如果一个程序改变了一个非易失性寄存器的值,它必须保存在改变这个寄存器之前堆栈中保存旧的值和在 ...
- Use the Microsoft Symbol for VS and Windbg
快捷方式mklink的远程符号由于所有者权限问题,链接到本地可能造成不能使用, 或每次都需要重新下载, 1.环境变量中没有设置_NT_SYMBOL_PATH的值 2.windbg快捷方式中也没有设置- ...
- 设置永久环境变量linux
========================================================================== http://www.cnblogs.com/Bi ...
- react组件选项卡demo
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- [转帖]tar高级教程:增量备份、定时备份、网络备份
tar高级教程:增量备份.定时备份.网络备份 作者: lesca 分类: Tutorials, Ubuntu 发布时间: 2012-03-01 11:42 ė浏览 27,065 次 61条评论 一.概 ...