莫烦keras学习自修第四天【分类问题】
1.代码实战
#!/usr/bin/env python #! _*_ coding:UTF-8 _*_ # 导入numpy import numpy as np np.random.seed(1337) # 导入验证码图片数据集 from keras.datasets import mnist from keras.utils import np_utils # 导入kearas的模型 from keras.models import Sequential # 导入keras的层和激励函数 from keras.layers import Dense, Activation # 导入keras的优化器 from keras.optimizers import RMSprop (X_train, y_train), (X_test, y_test) = mnist.load_data() # 生成训练数据和测试数据 X_train = X_train.reshape(X_train.shape[0], -1) / 255. X_test = X_test.reshape(X_test.shape[0], -1) / 255. y_train = np_utils.to_categorical(y_train, num_classes=10) y_test = np_utils.to_categorical(y_test, num_classes=10) # 生成训练模型,传入每个层及激励函数构造训练模型 model = Sequential([ Dense(32, input_dim=784), Activation('relu'), Dense(10), Activation('softmax'), ]) # 自定义优化器 rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # 使用优化器,和误差函数等编译训练模型 model.compile(optimizer=rmsprop, loss='categorical_crossentropy', metrics=['accuracy']) # 开始训练神经网络 model.fit(X_train, y_train, epochs=2, batch_size=32) # 开始测试神经网络 loss, accuracy = model.evaluate(X_test, y_test) print('test loss: ', loss) print('test accuracy: ', accuracy)
结果:
/Users/liudaoqiang/PycharmProjects/numpy/venv/bin/python /Users/liudaoqiang/Project/python_project/keras_day03/classifier.py Using Theano backend. Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz 16384/11490434 [..............................] - ETA: 0s 24576/11490434 [..............................] - ETA: 9:33 40960/11490434 [..............................] - ETA: 10:31 57344/11490434 [..............................] - ETA: 10:12 73728/11490434 [..............................] - ETA: 10:02 90112/11490434 [..............................] - ETA: 9:04 106496/11490434 [..............................] - ETA: 9:07 122880/11490434 [..............................] - ETA: 8:33 139264/11490434 [..............................] - ETA: 8:37 163840/11490434 [..............................] - ETA: 7:47 180224/11490434 [..............................] - ETA: 7:22 196608/11490434 [..............................] - ETA: 7:00 212992/11490434 [..............................] - ETA: 6:46 229376/11490434 [..............................] - ETA: 6:30 245760/11490434 [..............................] - ETA: 6:16 262144/11490434 [..............................] - ETA: 6:03 278528/11490434 [..............................] - ETA: 5:52 303104/11490434 [..............................] - ETA: 5:32 319488/11490434 [..............................] - ETA: 5:22 335872/11490434 [..............................] - ETA: 5:14 352256/11490434 [..............................] - ETA: 5:02 368640/11490434 [..............................] - ETA: 4:54 385024/11490434 [>.............................] - ETA: 4:43 401408/11490434 [>.............................] - ETA: 4:36 417792/11490434 [>.............................] - ETA: 4:27 442368/11490434 [>.............................] - ETA: 4:16 458752/11490434 [>.............................] - ETA: 4:08 475136/11490434 [>.............................] - ETA: 4:01 491520/11490434 [>.............................] - ETA: 3:55 524288/11490434 [>.............................] - ETA: 3:41 540672/11490434 [>.............................] - ETA: 3:36 557056/11490434 [>.............................] - ETA: 3:31 598016/11490434 [>.............................] - ETA: 3:17 614400/11490434 [>.............................] - ETA: 3:13 630784/11490434 [>.............................] - ETA: 3:09 647168/11490434 [>.............................] - ETA: 3:05 679936/11490434 [>.............................] - ETA: 2:56 720896/11490434 [>.............................] - ETA: 2:47 753664/11490434 [>.............................] - ETA: 2:41 786432/11490434 [=>............................] - ETA: 2:35 819200/11490434 [=>............................] - ETA: 2:29 851968/11490434 [=>............................] - ETA: 2:24 860160/11490434 [=>............................] - ETA: 2:23 892928/11490434 [=>............................] - ETA: 2:18 942080/11490434 [=>............................] - ETA: 2:11 958464/11490434 [=>............................] - ETA: 2:09 999424/11490434 [=>............................] - ETA: 2:04 1015808/11490434 [=>............................] - ETA: 2:03 1081344/11490434 [=>............................] - ETA: 1:55 1114112/11490434 [=>............................] - ETA: 1:52 1138688/11490434 [=>............................] - ETA: 1:51 1204224/11490434 [==>...........................] - ETA: 1:44 1236992/11490434 [==>...........................] - ETA: 1:42 1277952/11490434 [==>...........................] - ETA: 1:39 1294336/11490434 [==>...........................] - ETA: 1:38 1327104/11490434 [==>...........................] - ETA: 1:36 1392640/11490434 [==>...........................] - ETA: 1:31 1433600/11490434 [==>...........................] - ETA: 1:29 1466368/11490434 [==>...........................] - ETA: 1:27 1572864/11490434 [===>..........................] - ETA: 1:21 1589248/11490434 [===>..........................] - ETA: 1:20 1622016/11490434 [===>..........................] - ETA: 1:19 1695744/11490434 [===>..........................] - ETA: 1:15 1744896/11490434 [===>..........................] - ETA: 1:13 1761280/11490434 [===>..........................] - ETA: 1:13 1810432/11490434 [===>..........................] - ETA: 1:11 1900544/11490434 [===>..........................] - ETA: 1:07 1974272/11490434 [====>.........................] - ETA: 1:05 2007040/11490434 [====>.........................] - ETA: 1:04 2113536/11490434 [====>.........................] - ETA: 1:00 2179072/11490434 [====>.........................] - ETA: 58s 2195456/11490434 [====>.........................] - ETA: 58s 2244608/11490434 [====>.........................] - ETA: 57s 2301952/11490434 [=====>........................] - ETA: 55s 2424832/11490434 [=====>........................] - ETA: 52s 2441216/11490434 [=====>........................] - ETA: 52s 2490368/11490434 [=====>........................] - ETA: 51s 2564096/11490434 [=====>........................] - ETA: 49s 2613248/11490434 [=====>........................] - ETA: 48s 2703360/11490434 [======>.......................] - ETA: 46s 2752512/11490434 [======>.......................] - ETA: 45s 2826240/11490434 [======>.......................] - ETA: 44s 2875392/11490434 [======>.......................] - ETA: 43s 2949120/11490434 [======>.......................] - ETA: 42s 3014656/11490434 [======>.......................] - ETA: 41s 3121152/11490434 [=======>......................] - ETA: 39s 3137536/11490434 [=======>......................] - ETA: 39s 3186688/11490434 [=======>......................] - ETA: 38s 3276800/11490434 [=======>......................] - ETA: 37s 3383296/11490434 [=======>......................] - ETA: 36s 3448832/11490434 [========>.....................] - ETA: 35s 3522560/11490434 [========>.....................] - ETA: 34s 3588096/11490434 [========>.....................] - ETA: 33s 3645440/11490434 [========>.....................] - ETA: 33s 3710976/11490434 [========>.....................] - ETA: 32s 3801088/11490434 [========>.....................] - ETA: 31s 3883008/11490434 [=========>....................] - ETA: 30s 3956736/11490434 [=========>....................] - ETA: 29s 4038656/11490434 [=========>....................] - ETA: 29s 4145152/11490434 [=========>....................] - ETA: 28s 4202496/11490434 [=========>....................] - ETA: 27s 4284416/11490434 [==========>...................] - ETA: 27s 4390912/11490434 [==========>...................] - ETA: 26s 4440064/11490434 [==========>...................] - ETA: 25s 4530176/11490434 [==========>...................] - ETA: 25s 4636672/11490434 [===========>..................] - ETA: 24s 4685824/11490434 [===========>..................] - ETA: 23s 4775936/11490434 [===========>..................] - ETA: 23s 4792320/11490434 [===========>..................] - ETA: 23s 4898816/11490434 [===========>..................] - ETA: 22s 4931584/11490434 [===========>..................] - ETA: 22s 4997120/11490434 [============>.................] - ETA: 21s 5038080/11490434 [============>.................] - ETA: 21s 5103616/11490434 [============>.................] - ETA: 21s 5177344/11490434 [============>.................] - ETA: 20s 5242880/11490434 [============>.................] - ETA: 20s 5292032/11490434 [============>.................] - ETA: 20s 5398528/11490434 [=============>................] - ETA: 19s 5455872/11490434 [=============>................] - ETA: 19s 5505024/11490434 [=============>................] - ETA: 18s 5554176/11490434 [=============>................] - ETA: 18s 5660672/11490434 [=============>................] - ETA: 18s 5726208/11490434 [=============>................] - ETA: 17s 5767168/11490434 [==============>...............] - ETA: 17s 5816320/11490434 [==============>...............] - ETA: 17s 5922816/11490434 [==============>...............] - ETA: 16s 5971968/11490434 [==============>...............] - ETA: 16s 6029312/11490434 [==============>...............] - ETA: 16s 6062080/11490434 [==============>...............] - ETA: 16s 6094848/11490434 [==============>...............] - ETA: 15s 6111232/11490434 [==============>...............] - ETA: 15s 6266880/11490434 [===============>..............] - ETA: 15s 6324224/11490434 [===============>..............] - ETA: 14s 6340608/11490434 [===============>..............] - ETA: 14s 6512640/11490434 [================>.............] - ETA: 14s 6545408/11490434 [================>.............] - ETA: 13s 6586368/11490434 [================>.............] - ETA: 13s 6602752/11490434 [================>.............] - ETA: 13s 6758400/11490434 [================>.............] - ETA: 13s 6807552/11490434 [================>.............] - ETA: 12s 6848512/11490434 [================>.............] - ETA: 12s 6864896/11490434 [================>.............] - ETA: 12s 6930432/11490434 [=================>............] - ETA: 12s 7086080/11490434 [=================>............] - ETA: 11s 7127040/11490434 [=================>............] - ETA: 11s 7143424/11490434 [=================>............] - ETA: 11s 7225344/11490434 [=================>............] - ETA: 11s 7380992/11490434 [==================>...........] - ETA: 10s 7421952/11490434 [==================>...........] - ETA: 10s 7438336/11490434 [==================>...........] - ETA: 10s 7544832/11490434 [==================>...........] - ETA: 10s 7659520/11490434 [==================>...........] - ETA: 9s 7733248/11490434 [===================>..........] - ETA: 9s 7766016/11490434 [===================>..........] - ETA: 9s 7823360/11490434 [===================>..........] - ETA: 9s 7921664/11490434 [===================>..........] - ETA: 8s 8077312/11490434 [====================>.........] - ETA: 8s 8118272/11490434 [====================>.........] - ETA: 8s 8167424/11490434 [====================>.........] - ETA: 8s 8290304/11490434 [====================>.........] - ETA: 7s 8429568/11490434 [=====================>........] - ETA: 7s 8478720/11490434 [=====================>........] - ETA: 7s 8536064/11490434 [=====================>........] - ETA: 7s 8675328/11490434 [=====================>........] - ETA: 6s 8814592/11490434 [======================>.......] - ETA: 6s 8863744/11490434 [======================>.......] - ETA: 6s 8970240/11490434 [======================>.......] - ETA: 5s 9003008/11490434 [======================>.......] - ETA: 5s 9216000/11490434 [=======================>......] - ETA: 5s 9265152/11490434 [=======================>......] - ETA: 5s 9748480/11490434 [========================>.....] - ETA: 3s 9822208/11490434 [========================>.....] - ETA: 3s 9912320/11490434 [========================>.....] - ETA: 3s 9945088/11490434 [========================>.....] - ETA: 3s 10027008/11490434 [=========================>....] - ETA: 3s 10100736/11490434 [=========================>....] - ETA: 2s 10190848/11490434 [=========================>....] - ETA: 2s 10272768/11490434 [=========================>....] - ETA: 2s 10354688/11490434 [==========================>...] - ETA: 2s 10395648/11490434 [==========================>...] - ETA: 2s 10502144/11490434 [==========================>...] - ETA: 2s 10551296/11490434 [==========================>...] - ETA: 1s 10625024/11490434 [==========================>...] - ETA: 1s 10690560/11490434 [==========================>...] - ETA: 1s 10764288/11490434 [===========================>..] - ETA: 1s 10846208/11490434 [===========================>..] - ETA: 1s 10919936/11490434 [===========================>..] - ETA: 1s 11337728/11490434 [============================>.] - ETA: 0s 11403264/11490434 [============================>.] - ETA: 0s 11493376/11490434 [==============================] - 23s 2us/step 11501568/11490434 [==============================] - 23s 2us/step Epoch 1/2 32/60000 [..............................] - ETA: 26s - loss: 2.4741 - acc: 0.0625 1568/60000 [..............................] - ETA: 2s - loss: 1.6006 - acc: 0.5504 3264/60000 [>.............................] - ETA: 1s - loss: 1.2046 - acc: 0.6863 4704/60000 [=>............................] - ETA: 1s - loss: 1.0104 - acc: 0.7428 6368/60000 [==>...........................] - ETA: 1s - loss: 0.8834 - acc: 0.7747 8000/60000 [===>..........................] - ETA: 1s - loss: 0.7862 - acc: 0.7997 9728/60000 [===>..........................] - ETA: 1s - loss: 0.7161 - acc: 0.8150 11488/60000 [====>.........................] - ETA: 1s - loss: 0.6655 - acc: 0.8258 13376/60000 [=====>........................] - ETA: 1s - loss: 0.6203 - acc: 0.8360 15040/60000 [======>.......................] - ETA: 1s - loss: 0.5930 - acc: 0.8415 16928/60000 [=======>......................] - ETA: 1s - loss: 0.5626 - acc: 0.8487 18880/60000 [========>.....................] - ETA: 1s - loss: 0.5363 - acc: 0.8555 20832/60000 [=========>....................] - ETA: 1s - loss: 0.5138 - acc: 0.8611 22368/60000 [==========>...................] - ETA: 1s - loss: 0.5025 - acc: 0.8642 24288/60000 [===========>..................] - ETA: 1s - loss: 0.4874 - acc: 0.8675 26208/60000 [============>.................] - ETA: 0s - loss: 0.4728 - acc: 0.8708 28128/60000 [=============>................] - ETA: 0s - loss: 0.4608 - acc: 0.8732 30016/60000 [==============>...............] - ETA: 0s - loss: 0.4503 - acc: 0.8757 31616/60000 [==============>...............] - ETA: 0s - loss: 0.4406 - acc: 0.8779 33504/60000 [===============>..............] - ETA: 0s - loss: 0.4309 - acc: 0.8807 35296/60000 [================>.............] - ETA: 0s - loss: 0.4251 - acc: 0.8816 37120/60000 [=================>............] - ETA: 0s - loss: 0.4171 - acc: 0.8838 38976/60000 [==================>...........] - ETA: 0s - loss: 0.4101 - acc: 0.8855 40416/60000 [===================>..........] - ETA: 0s - loss: 0.4060 - acc: 0.8868 42240/60000 [====================>.........] - ETA: 0s - loss: 0.4000 - acc: 0.8884 44064/60000 [=====================>........] - ETA: 0s - loss: 0.3941 - acc: 0.8900 45888/60000 [=====================>........] - ETA: 0s - loss: 0.3875 - acc: 0.8920 47680/60000 [======================>.......] - ETA: 0s - loss: 0.3813 - acc: 0.8935 49184/60000 [=======================>......] - ETA: 0s - loss: 0.3773 - acc: 0.8945 51008/60000 [========================>.....] - ETA: 0s - loss: 0.3723 - acc: 0.8959 52832/60000 [=========================>....] - ETA: 0s - loss: 0.3669 - acc: 0.8973 54656/60000 [==========================>...] - ETA: 0s - loss: 0.3621 - acc: 0.8986 56480/60000 [===========================>..] - ETA: 0s - loss: 0.3577 - acc: 0.8998 57920/60000 [===========================>..] - ETA: 0s - loss: 0.3540 - acc: 0.9007 59744/60000 [============================>.] - ETA: 0s - loss: 0.3492 - acc: 0.9020 60000/60000 [==============================] - 2s 29us/step - loss: 0.3488 - acc: 0.9021 Epoch 2/2 32/60000 [..............................] - ETA: 6s - loss: 0.0511 - acc: 0.9688 1856/60000 [..............................] - ETA: 1s - loss: 0.2283 - acc: 0.9316 3584/60000 [>.............................] - ETA: 1s - loss: 0.2271 - acc: 0.9350 5216/60000 [=>............................] - ETA: 1s - loss: 0.2180 - acc: 0.9356 6752/60000 [==>...........................] - ETA: 1s - loss: 0.2226 - acc: 0.9347 8416/60000 [===>..........................] - ETA: 1s - loss: 0.2237 - acc: 0.9351 10080/60000 [====>.........................] - ETA: 1s - loss: 0.2214 - acc: 0.9350 11744/60000 [====>.........................] - ETA: 1s - loss: 0.2173 - acc: 0.9367 13248/60000 [=====>........................] - ETA: 1s - loss: 0.2177 - acc: 0.9372 14848/60000 [======>.......................] - ETA: 1s - loss: 0.2171 - acc: 0.9372 16640/60000 [=======>......................] - ETA: 1s - loss: 0.2116 - acc: 0.9391 18432/60000 [========>.....................] - ETA: 1s - loss: 0.2092 - acc: 0.9402 20032/60000 [=========>....................] - ETA: 1s - loss: 0.2078 - acc: 0.9406 21856/60000 [=========>....................] - ETA: 1s - loss: 0.2068 - acc: 0.9407 23584/60000 [==========>...................] - ETA: 1s - loss: 0.2067 - acc: 0.9407 25408/60000 [===========>..................] - ETA: 1s - loss: 0.2036 - acc: 0.9413 27200/60000 [============>.................] - ETA: 0s - loss: 0.2058 - acc: 0.9404 28800/60000 [=============>................] - ETA: 0s - loss: 0.2050 - acc: 0.9407 30592/60000 [==============>...............] - ETA: 0s - loss: 0.2046 - acc: 0.9407 32224/60000 [===============>..............] - ETA: 0s - loss: 0.2045 - acc: 0.9408 34016/60000 [================>.............] - ETA: 0s - loss: 0.2034 - acc: 0.9413 35744/60000 [================>.............] - ETA: 0s - loss: 0.2031 - acc: 0.9413 37248/60000 [=================>............] - ETA: 0s - loss: 0.2025 - acc: 0.9414 38880/60000 [==================>...........] - ETA: 0s - loss: 0.2007 - acc: 0.9419 40448/60000 [===================>..........] - ETA: 0s - loss: 0.1982 - acc: 0.9425 42080/60000 [====================>.........] - ETA: 0s - loss: 0.1987 - acc: 0.9428 43744/60000 [====================>.........] - ETA: 0s - loss: 0.1977 - acc: 0.9431 45216/60000 [=====================>........] - ETA: 0s - loss: 0.1973 - acc: 0.9433 46848/60000 [======================>.......] - ETA: 0s - loss: 0.1973 - acc: 0.9434 48320/60000 [=======================>......] - ETA: 0s - loss: 0.1968 - acc: 0.9434 49984/60000 [=======================>......] - ETA: 0s - loss: 0.1967 - acc: 0.9435 51712/60000 [========================>.....] - ETA: 0s - loss: 0.1961 - acc: 0.9438 53312/60000 [=========================>....] - ETA: 0s - loss: 0.1955 - acc: 0.9438 55072/60000 [==========================>...] - ETA: 0s - loss: 0.1954 - acc: 0.9438 56864/60000 [===========================>..] - ETA: 0s - loss: 0.1954 - acc: 0.9439 58688/60000 [============================>.] - ETA: 0s - loss: 0.1942 - acc: 0.9440 60000/60000 [==============================] - 2s 30us/step - loss: 0.1937 - acc: 0.9440 32/10000 [..............................] - ETA: 0s 6784/10000 [===================>..........] - ETA: 0s 10000/10000 [==============================] - 0s 7us/step ('test loss: ', 0.18316557179167867) ('test accuracy: ', 0.9466) Process finished with exit code 0
莫烦keras学习自修第四天【分类问题】的更多相关文章
- 莫烦scikit-learn学习自修第四天【内置训练数据集】
1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linea ...
- 莫烦keras学习自修第五天【CNN卷积神经网络】
1.代码实战 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np np.random.seed(1337) # for r ...
- 莫烦keras学习自修第三天【回归问题】
1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ import numpy as np # 这句话不知道是什么意思 np.random.seed ...
- 莫烦keras学习自修第二天【backend配置】
keras的backend包括tensorflow和theano,tensorflow只能在macos和linux上运行,theano可以在windows,macos及linux上运行 1. 使用配置 ...
- 莫烦keras学习自修第一天【keras的安装】
1. 安装步骤 (1)确保已经安装了python2或者python3 (2)安装numpy,python2使用pip2 install numpy, python3则使用pip3 install nu ...
- 莫烦theano学习自修第四天【激励函数】
1. 定义 激励函数通常用于隐藏层,是将特征值进行过滤或者激活的算法 2.常见的激励函数 1. sigmoid (1)sigmoid() (2)ultra_fast_sigmoid() (3)hard ...
- 莫烦theano学习自修第八天【分类问题】
1. 代码实现 from __future__ import print_function import numpy as np import theano import theano.tensor ...
- 莫烦scikit-learn学习自修第一天【scikit-learn安装】
1. 机器学习的分类 (1)有监督学习(包括分类和回归) (2)无监督学习(包括聚类) (3)强化学习 2. 安装 (1)安装python (2)安装numpy >=1.6.1 (3)安装sci ...
- 莫烦theano学习自修第九天【过拟合问题与正规化】
如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另 ...
随机推荐
- 电脑如何用HDMI连接电视
因为现在的液晶电视基本上都有VGA接口,所以你可以很容易地用VGA线实现电脑连接电视上,但是该文有一个地方没有提到,那就是分辨率的问 题,现在的液晶电视的主流面板已经是全高清面板(1920X1080) ...
- ORA-19566: exceeded limit of 0 corrupt blocks for file E:\xxxx\<datafilename>.ORA.
How to Format Corrupted Block Not Part of Any Segment (Doc ID 336133.1) To BottomTo Bottom In this D ...
- 获取数值型数组中大于60的元素个数,给数值型数组中不足60分的加20分。(数组,for循环,if条件判断语句)
package com.Summer_0420.cn; /** * @author Summer * 获取数值型数组中大于60的元素个数 * 给数值型数组中不足60分的加20分 */ public c ...
- koa-convert源码分析
koa-convert最主要的作用是:将koa1包中使用的Generator函数转换成Koa2中的async函数.更准确的说是将Generator函数转换成使用co包装成的Promise对象.然后执行 ...
- Python脱产8期 Day11 2019/4/25
一 字符串比较 1.字符串比较:字符串对应的ascii进行比较 2.多个字符的字符串进行比较:从前往后逐个字符进行比较,一旦哪个位置的字符出现了大小关系就结束比较. 二 形参与实参 1.参数介绍: 函 ...
- Node.js这么下去...
Node.js是基于javascript的.event驱动的单进程服务器(也能实现cluster模式,只要一个fork()语句,类似于C语言的进程创建). 所以大胆估计:Node.js会把很多大网站吞 ...
- js、jquery实现放大镜效果
在一些电商网站的商品详情页面,都会有放大镜效果,实现起来并不是很困难,今天用了两个小时,写了一个放大镜效果的实例,来分享给大家! 实现的效果大概是这个样子的 预览 先来看一下效果吧,点击下面的链接预览 ...
- Python全栈开发之路 【第三篇】:Python基础之字符编码和文件操作
本节内容 一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件语句: if 条件成立: val = 1 else: val = 2 改成三元运算: val = 1 if 条件成 ...
- 学习用Node.js和Elasticsearch构建搜索引擎(3):使用curl命令操作elasticsearch
使用Elasticsearch不免要提到curl工具,curl是利用URL语法在命令行方式下工作的开源文件传输工具.官网地址:https://curl.haxx.se/ 因为elasticsearch ...
- rabbitmq集群运维一点总结
说明:以下操作都以三节点集群为例,机器名标记为机器A.机器B.机器C,如果为双节点忽略机器C,如果为各多节点则与机器C操作相同 一.rabbitmq集群必要条件 1.1.绑定实体ip,即ip a所能查 ...