传送门


因为连距离限制的边的细节调了贼久QAQ

这个题和HNOI2013 切糕性质相同,都是有距离限制的最小割问题

对于每一个函数,用一条链记录变量\(x\)在不同取值下这个函数的贡献。对于一个\(x_u \leq x_v + d\)的限制,用一条\(INF\)的边连接链上对应的两个点来限制这个条件。

注意一些细节的地方:

①注意每一个限制中每一个点对应另一条链的哪一个点,一定要想清楚;

②如果\(c<0\),链上还会存在一些点不可能被割掉,还要连\(S\)和\(T\)相关的边限制这样的割。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
#include<random>
#include<cassert>
#define int long long
#define inf 1e10
#define INF 1e13
//This code is written by Itst
using namespace std;

const int MAXN = 1e5 + 7 , MAXM = 1e6 + 7;
struct Edge{
    int end , upEd , f , c;
}Ed[MAXM];
int head[MAXN] , a[51] , b[51] , c[51] , l[51] , r[51] , ind[51][207];
int N , M , S , T , cntEd = 1;
queue < int > q;

inline void addEd(int a , int b , int c , int d = 0){
    Ed[++cntEd].end = b;
    Ed[cntEd].upEd = head[a];
    Ed[cntEd].f = c;
    Ed[cntEd].c = d;
    head[a] = cntEd;
}

inline void addE(int a , int b , int c , int d = 0 , bool f = 0){
    addEd(a , b , c , d); addEd(b , a , c * f , -d);
}

int cur[MAXN] , dep[MAXN];

inline bool bfs(){
    while(!q.empty())
        q.pop();
    q.push(S);
    memset(dep , 0 , sizeof(dep));
    dep[S] = 1;
    while(!q.empty()){
        int t = q.front();
        q.pop();
        for(int i = head[t] ; i ; i = Ed[i].upEd)
            if(Ed[i].f && !dep[Ed[i].end]){
                dep[Ed[i].end] = dep[t] + 1;
                if(Ed[i].end == T){
                    memcpy(cur , head , sizeof(head));
                    return 1;
                }
                q.push(Ed[i].end);
            }
    }
    return 0;
}

inline int dfs(int x , int mF){
    if(x == T)
        return mF;
    int sum = 0;
    for(int &i = cur[x] ; i ; i = Ed[i].upEd)
        if(Ed[i].f && dep[Ed[i].end] == dep[x] + 1){
            int t = dfs(Ed[i].end , min(mF - sum , Ed[i].f));
            if(t){
                Ed[i].f -= t;
                Ed[i ^ 1].f += t;
                sum += t;
                if(sum == mF)
                    break;
            }
        }
    return sum;
}

int Dinic(){
    int ans = 0;
    while(bfs())
        ans += dfs(S , INF);
    return ans;
}

inline int calc(int tp , int x){
    return a[tp] * x * x + b[tp] * x + c[tp];
}

signed main(){
#ifndef ONLINE_JUDGE
    freopen("in" , "r" , stdin);
    //freopen("out" , "w" , stdout);
#endif
    ios::sync_with_stdio(0);
    cin >> N >> M;
    for(int i = 1 ; i <= N ; ++i) cin >> a[i] >> b[i] >> c[i];
    T = 1e5;
    int cnt = 0;
    for(int i = 1 ; i <= N ; ++i){
        cin >> l[i] >> r[i];
        for(int j = 0 ; j <= 200 ; ++j) ind[i][j] = ++cnt;
        addE(S , ind[i][0] , l[i] == -100 ? inf - calc(i , -100) : INF);
        addE(ind[i][200] , T , INF);
        for(int j = 1 ; j <= 200 ; ++j)
            addE(ind[i][j - 1] , ind[i][j] , j - 100 >= l[i] && j - 100 <= r[i] ? inf - calc(i , j - 100) : INF);
    }
    while(M--){
        int a , b , c;
        cin >> a >> b >> c;
        for(int i = max(0ll , c) ; i <= min(200ll , 200 + c) ; ++i)
            addE(ind[a][i] , ind[b][i - c] , INF);
        if(c < 0){
            addE(S , ind[b][-c - 1] , INF);
            addE(ind[a][200 + c] , T , INF);
        }
    }
    cout << (int)(N * inf - Dinic());
    return 0;
}

CF434D Nanami's Power Plant 最小割的更多相关文章

  1. 【CF434D】Nanami's Power Plant 最小割

    [CF434D]Nanami's Power Plant 题意:有n个二次函数$y=a_ix^2+b_ix+c_i$($a_i,b_i,c_i$是整数),第i个函数要求x的取值在$[l_i,r_i]$ ...

  2. Codeforces Round #248 (Div. 1) D - Nanami's Power Plant 最小割

    D - Nanami's Power Plant 思路:类似与bzoj切糕那道题的模型.. #include<bits/stdc++.h> #define LL long long #de ...

  3. CF434D Nanami's Power Plant

    就是切糕那道题,首先对每个函数连一串,然后\(x_u\leq x_v+d\)这个条件就是\(u\)函数\(i\)取值连向\(v\)函数\(i-d\)取值边权为inf,然后答案就是最小割了. #incl ...

  4. CodeForces - 434D Nanami's Power Plant

    Codeforces - 434D 题目大意: 给定一个长为n的序列,序列中的第i为上的值\(x_i\),序列第i位上的值\(x_i\in[l_i,r_i]\),价值为\(f_i(x_i)\),其中\ ...

  5. 【HDU 5855】Less Time, More profit(网络流、最小割、最大权闭合子图)

    Less Time, More profit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  6. UVA 10480 Sabotage (网络流,最大流,最小割)

    UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...

  7. bzoj1565【NOI2009】植物大战僵尸(最小割)

    题目描述 Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻.该款游戏包含多 ...

  8. UVA10480:Sabotage(最小割+输出)

    Sabotage 题目链接:https://vjudge.net/problem/UVA-10480 Description: The regime of a small but wealthy di ...

  9. 【二分 最小割】cf808F. Card Game

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

随机推荐

  1. 使用Visual Studio Team Services敏捷规划和项目组合管理(三)——使用Kanban板

    使用Visual Studio Team Services敏捷规划和项目组合管理(三)--使用Kanban板 1.要查看Kanban板,请单击Work>Backlogs页面上的Board 链接. ...

  2. RHEL 5.7 使用rpm安装XtraBackup问题总结

    在Red Hat Enterprise Linux Server release 5.7 (Tikanga)上使用RPM方式安装Percona Xtrabackup 2.4.6时遇到了一些问题,特意总 ...

  3. C#学习之接口

    什么是接口?其实,接口简单理解就是一种约定,使得实现接口的类或结构在形式上保持一致.个人觉得,使用接口可以使程序更加清晰和条理化,这就是接口的好处,但并不是所有的编程语言都支持接口,C#是支持接口的. ...

  4. NVM 安装 nodejs

    Windows 安装: 下载NVM 安装包:https://github.com/coreybutler/nvm-windows/releases 下载nvm-setup.zip文件后,解压后安装 安 ...

  5. NUMA导致的Oracle性能问题

    背景简介: Oracle版本:11.2.0.4 OS 版本:OEL5.8 在一次Oracle的Dataguard正常switchover过程中,遇到了一个极其诡异的问题,一条主业务的SQL语句在新主库 ...

  6. Linux进程优先级的处理--Linux进程的管理与调度(二十二)

    1. linux优先级的表示 1.1 优先级的内核表示 linux优先级概述 在用户空间通过nice命令设置进程的静态优先级, 这在内部会调用nice系统调用, 进程的nice值在-20~+19之间. ...

  7. Windows Server 2016-Active Directory域服务端口汇总

    本章为大家简单整理一下有关Windows server Active Directory和Active Directory域服务(AD DS)组件的端口要求.生产环境中我们在做网络调整.防火墙或者开关 ...

  8. Oracl数据库+PL/SQL安装与配置

    资源位置:百度网盘/Oracle+PL/SQL 一.Oracle安装与配置 Oracle 11g 最好安装在Win7上,Win10会有各种不兼容问题. 先安装Oracle数据库,database数据库 ...

  9. php判断手机是安卓系统还是ios系统

    最近项目,要判断用户的手机是安卓的还是ios的,搜了一下相关的资料,最终获得的结果.事实证明,是有效的!主要是要用到HTTP_USER_AGENT,它表示的意思是用来检查浏览页面的访问者在用什么操作系 ...

  10. Qt的事件

    Qt的事件机制 事件过滤器: 可以让一个对象侦听拦截另外一个对象的事件. 实现原理: 在所有Qt对象的基类:QObject中有一个 类型为:QObjectList 名字为:eventFilters 的 ...