Kafka-API
ctrl+H
new 它的实现类
ctrl+r替换
格式化ctrl+alt+l
ctrl+f
ctrl+alt+v
替换
< "
< <
> >
Kafka生产者Java API
创建生产者
不带回调函数的
public class CustomProducer {
public static void main(String[] args) throws InterruptedException {
Properties properties = new Properties();
//kafka地址
properties.put("bootstrap.servers", "hadoop101:9092, hadoop102:9092, hadoop103:9092");
//acks=-1
properties.put("acks", "all");
properties.put("retries", 0);
//基于大小的批处理
properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
//基于时间的批处理
properties.put("linger.ms", 1);
//客户端缓存大小
properties.put("buffer.memory", 33554432);
//k v序列化
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(properties);
for (int i = 0; i < 9; i++){
producer.send(new ProducerRecord<String, String>("first","" + i, "Hello" + i ));
}
//Thread.sleep(1000);
producer.close(); //忘记close关了,它就是基于批处理的条件( 基于大小的批处理; 基于时间的批处理,看是否达到,没有达到就不会send;)
}
}
new producer<String, String>( "主题", 分区int, " key“, "value" )
带回调函数
带回调函数的producer, 每发一条消息调用一次回调函数
不管有没有发送成功
public class CustomProducerCompletion {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("bootstrap.servers", "hadoop101:9092, hadoop102:9092, hadoop103:9092");
properties.put("acks", "all");
properties.put("retries", 2);
properties.put("batch.size", 16384);
properties.put("linger.ms", 1);
properties.put("buffer.memory", 33554432);
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//自定义分区 ProducerConfig.PARTITIONER_CLASS_CONFIG
//properties.put("partitioner.class", "com.atguigu.kafka.producer.CustomPartitioner");
//拦截器
properties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
Arrays.asList("com.atguigu.kafka.interceptor.TimeStampInterceptor","com.atguigu.kafka.interceptor.CountInterceptor"));
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
for (int i = 0; i < 9; i++){
kafkaProducer.send(new ProducerRecord<String, String>("first", "1", "Hi" + i), new Callback() {
public void onCompletion(RecordMetadata recordMetadata, Exception e) {
if (recordMetadata != null){
System.out.println("Topic:" + recordMetadata.topic() + "\t" +
"Partition:" + recordMetadata.partition() + "\t" + "offset:" + recordMetadata.offset()
);
}
}
});
}
kafkaProducer.close();
}
}
自定义分区
指定分区重写key的规则
public class CustomPartitioner implements Partitioner {
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
return 0; //控制分区
}
public void close() {
}
/**
* 可以添加属性
* @param config
*/
public void configure(Map<String, ?> config) {
}
}
Kafka消费者Java API
高级API
不需手动管理offset
poll 超时时间
subscribe订阅主题
可同时消费多个主题
数组-Arrays.asList->集合
1) 高级API优点
高级API 写起来简单
不需要自行去管理offset,系统通过zookeeper自行管理。
不需要管理分区,副本等情况,系统自动管理。
消费者断线会自动根据上一次记录在zookeeper中的offset去接着获取数据;可以使用group来区分对同一个topic 的不同程序访问分离开来(不同的group记录不同的offset,这样不同程序读取同一个topic才不会因为offset互相影响)
2)高级API缺点
不能自行控制offset(对于某些特殊需求来说)
不能细化控制如分区、副本、zk等
//高级API
public class CustomConsumer {
public static void main(String[] args) {
Properties properties = new Properties();
//定义kafka集群地址
properties.put("bootstrap.servers", "hadoop101:9092, hadoop102:9092, hadoop103:9092");
//消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "kris");
//是否自动提交偏移量:(kafka集群管理)
properties.put("enable.auto.commit", "true");
//间隔多长时间提交一次offset
properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
//key,value的反序列化
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);
kafkaConsumer.subscribe(Arrays.asList("first")); //订阅主题
while (true){
ConsumerRecords<String, String> records = kafkaConsumer.poll(100); //定义Consumer, poll拉数据
for (ConsumerRecord<String, String> record : records) {
System.out.println("Topic:" + record.topic() + "\t" +
"Partition:" + record.partition() + "\t" + "Offset:" +record.offset()
+ "\t" + "key:" + record.key() + "\t" + "value:" + record.value());
}
}
}
}
低级API
leader
offset
保存offset
消息
public class LowLevelConsumer {
public static void main(String[] args) {
//1.集群
ArrayList<String> list = new ArrayList<>();
list.add("hadoop101");
list.add("hadoop102");
list.add("hadoop103");
//2.主题
String topic = "first";
//3.分区
int partition = 2;
//4.offset
long offset = 10;
//5.获取leader
String leader = getLeader(list, topic, partition);
//6.连接leader获取数据
getData(leader, topic, partition, offset);
}
private static void getData(String leader, String topic, int partition, long offset) {
//1.创建SimpleConsumer
SimpleConsumer consumer = new SimpleConsumer(leader, 9092, 2000, 1024 * 1024 * 2, "getData");
//2.发送请求
//3.构建请求对象FetchRequestBuilder
FetchRequestBuilder builder = new FetchRequestBuilder();
FetchRequestBuilder requestBuilder = builder.addFetch(topic, partition, offset, 1024 * 1024);
FetchRequest fetchRequest = requestBuilder.build();
//4.获取响应
FetchResponse fetchResponse = consumer.fetch(fetchRequest);
//5.解析响应
ByteBufferMessageSet messageAndOffsets = fetchResponse.messageSet(topic, partition);
//6.遍历
for (MessageAndOffset messageAndOffset : messageAndOffsets) {
long message_offset = messageAndOffset.offset();
Message message = messageAndOffset.message();
//7.解析message
ByteBuffer byteBuffer = message.payload(); //payload是有效负载
byte[] bytes = new byte[byteBuffer.limit()];
byteBuffer.get(bytes);
//8.获取数据
System.out.println("offset:" + message_offset + "\t" + "value:" + new String(bytes));
}
}
private static String getLeader(ArrayList<String> list, String topic, int partition) {
//1.循环发送请求,获取leader
for (String host : list) {
//2.创建SimpleConsumer对象
SimpleConsumer consumer = new SimpleConsumer(
host,
9092,
2000,
1024*1024,
"getLeader"
);
//3.发送获取leader请求
//4.构造请求TopicMetadataRequest
TopicMetadataRequest request = new TopicMetadataRequest(Arrays.asList(topic));
//5.获取响应TopicMetadataResponse
TopicMetadataResponse response = consumer.send(request);
//6.解析响应
List<TopicMetadata> topicsMetadata = response.topicsMetadata();
//7.遍历topicsMetadata
for (TopicMetadata topicMetadata : topicsMetadata) {
List<PartitionMetadata> partitionsMetadata = topicMetadata.partitionsMetadata();
//8.遍历partitionsMetadata
for (PartitionMetadata partitionMetadata : partitionsMetadata) {
//9.判断
if (partitionMetadata.partitionId() == partition){
BrokerEndPoint endPoint = partitionMetadata.leader();
return endPoint.host();
}
}
}
}
return null;
}
}
Kafka producer拦截器
flume-事件
flume的拦截器链:
kafka-消息
每发送一条数据调用一次onSend方法
接收数据调用回调函数之前调用onAcknoeledgement
https://blog.csdn.net/stark_summer/article/details/50144591
Kafka与Flume比较
在企业中必须要清楚流式数据采集框架flume和kafka的定位是什么:
flume:cloudera公司研发:
适合多个生产者;
适合下游数据消费者不多的情况;
适合数据安全性要求不高的操作;
适合与Hadoop生态圈对接的操作。
kafka:linkedin公司研发:
适合数据下游消费众多的情况;
适合数据安全性要求较高的操作,支持replication。
因此我们常用的一种模型是:
线上数据 --> flume --> kafka --> flume(根据情景增删该流程) --> HDFS
vim flume-kafka.conf
# define
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F -c +0 /opt/module/datas/flume.log
a1.sources.r1.shell = /bin/bash -c # sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = hadoop101:9092,hadoop102:9092,hadoop103:9092
a1.sinks.k1.kafka.topic = first
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1 # channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100 # bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
tail -F动态实时 -c 0从0行开始监控
[kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/flume-kafka.conf [kris@hadoop101 datas]$ cat > flume.log
Hello [kris@hadoop101 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop101: --topic first
Hello
Kafka-API的更多相关文章
- Kafka实战系列--Kafka API使用体验
前言: kafka是linkedin开源的消息队列, 淘宝的metaq就是基于kafka而研发. 而消息队列作为一个分布式组件, 在服务解耦/异步化, 扮演非常重要的角色. 本系列主要研究kafka的 ...
- Kafka API操作
Kafka API实战 环境准备 在eclipse中创建一个java工程 在工程的根目录创建一个lib文件夹 解压kafka安装包,将安装包libs目录下的jar包拷贝到工程的lib目录下,并buil ...
- kafka api的基本使用
kafka API kafka Consumer提供两套Java API:高级Consumer API.和低级Consumer API. 高级Consumer API 优点: 高级API写起来简单,易 ...
- 一文详解Kafka API
摘要:Kafka的API有Producer API,Consumer API还有自定义Interceptor (自定义拦截器),以及处理的流使用的Streams API和构建连接器的Kafka Con ...
- Kafka API: TopicMetadata
Jusfr 原创,转载请注明来自博客园 TopicMetadataRequest/TopicMetadataResponse 前文简单说过"Kafka是自描述的",是指其broke ...
- 5.kafka API consumer
1.kafka consumer流程1.1.在启动时或者协调节点故障转移时,消费者发送ConsumerMetadataRequest给bootstrap brokers列表中的任意一个brokers. ...
- 4.kafka API producer
1.Producer流程首先构建待发送的消息对象ProducerRecord,然后调用KafkaProducer.send方法进行发送.KafkaProducer接收到消息后首先对其进行序列化,然后结 ...
- Kafka API实战
第4章 KafkaAPI实战 1)启动zk和kafka集群,在kafka集群中打开一个消费者 [hadoop102 kafka]$ bin/kafka-console-consumer.sh \ -- ...
- Kafka API使用
- 9.Kafka API使用
随机推荐
- python 列表,字典,元组,字符串,常用函数
飞机票 一.列表方法 1.ls.extend(object) 向列表ls中插入object中的每个元素,object可以是字符串,元组和列表(字符串“abc”中包含3个元组),相当于ls和object ...
- linux 批量进行:解压缩某一类压缩文件类型的文件
1: 编写脚本 [oracle@oracle oracle]$ vim unzip.sh ziphome=/u01/app/oracle ziplist=`du -a $ziphome |grep ' ...
- 【Linux】系统基本命令
# lsb_release -a 查看系统版本# uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cp ...
- canvas 保存bitmap到本地
File f = new File("/sdcard/DCIM/Camera/0.png"); FileOutputStream fos = null; try { fos = n ...
- 浅析PHP中的闭包和匿名函数
PHP闭包和匿名函数使用的句法与普通函数相同,但闭包和匿名函数其实是伪装成函数的对象(Closure类的实例) .下面给大家介绍PHP中的闭包和匿名函数知识,需要的朋友参考下吧 闭包是指在创建时封 ...
- Bootstrap补充
一.一个小知识点 1.截取长屏的操作 2.设置默认格式 3.md,sm, xs 4.空格和没有空格的选择器 二.响应式介绍 - 响应式布局是什么? 同一个网页在不同的终端上呈现不同的布局等 - 响应式 ...
- 【kafka】设置指定topic和group_id消耗的offset
该博文方法有问题,正确方案在http://www.cnblogs.com/dplearning/p/7992994.html 背景: 搭建了一个kafka集群,建立了topic test,用group ...
- 《剑指offer》用两个栈实现队列
本题来自<剑指offer> 用两个栈实现队列 题目: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 思路: 队列定义:先进先出 栈定义:先进后出 要 ...
- 拓扑排序基础 hdu1258,hdu2647
由这两题可知拓扑排序是通过“小于”关系加边建图的 hdu2647 /* 拓扑排序的原则是把“小于”看成有向边 此题反向建图即可 并且开num数组来记录每个点的应该得到的权值 */ #include&l ...
- MySQL慢查询 - 开启慢查询
一.简介 开启慢查询日志,可以让MySQL记录下查询超过指定时间的语句,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能. 二.参数说明 slow_query_log 慢查询开启状态 slow_ ...