Light OJ 1102
题意: 给你一个数 N , 求分成 K 个数 (可以为 0 ) 的种数;
思路: 类似 在K个抽屉放入 N 个苹果, 不为0, 就是 在 n-1 个空隙中选 m-1个;
为 0, 就可以先在 K 个抽屉一个苹果, 之后类似了;
故答案就是 C(N+K-1, K-1);
数据大, 还控制内存。。。 按位乘 + 逆元
#include<bits/stdc++.h>
using namespace std;
typedef int LL;
const int maxn = 2000000 + 131;
const LL MOD = 1000000007; LL Mul(LL a, LL b, LL m)
{
a = (a % m + m) % m;
b = (b % m + m) % m;
LL ret = 0;
while(b)
{
if(b & 1) ret = (ret + a) % m;
b >>= 1;
a <<= 1;
a %= m;
}
return ret;
} LL Pow_Mod(LL a, LL n, LL m)
{
LL ret = 1;
while(n)
{
if(n & 1) ret = Mul(ret, a, m);
n >>= 1;
a = Mul(a, a, m);
}
return ret;
} LL Num[maxn], Inv[maxn];
void Init()
{
Num[0] = 1;
for(LL i = 1; i < maxn; ++i) Num[i] = Mul(Num[i-1], i, MOD);
Inv[maxn-1] = Pow_Mod(Num[maxn-1], MOD-2, MOD);
for(LL i = maxn-2; i >= 0; --i) Inv[i] = Mul(Inv[i+1], (i+1), MOD);
} LL C(LL m, LL n, LL mod)
{
if(n == 0 || n == m) return 1;
LL ret = 1;
LL s = m - n;
ret = Mul(Num[m], Inv[s], mod);
ret = Mul(ret, Inv[n], mod);
return ret;
} int main()
{
Init();
int t;
LL n, k;
scanf("%d",&t);
for(int kase = 1; kase <= t; ++kase)
{
scanf("%d %d",&n, &k);
printf("Case %d: %d\n",kase, C(n+k-1, k-1, MOD));
}
}
Light OJ 1102的更多相关文章
- (light oj 1102) Problem Makes Problem (组合数 + 乘法逆元)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, ...
- light oj 1102 - Problem Makes Problem组合数学(隔板法)
1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...
- Light OJ 1114 Easily Readable 字典树
题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...
- Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...
- Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖
标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...
- Light OJ 1316 A Wedding Party 最短路+状态压缩DP
题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...
- light oj 1007 Mathematically Hard (欧拉函数)
题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...
- Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖
题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...
- Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩
题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...
随机推荐
- Spark源码剖析 - SparkContext的初始化(十)_Spark环境更新
12. Spark环境更新 在SparkContext的初始化过程中,可能对其环境造成影响,所以需要更新环境,代码如下: SparkContext初始化过程中,如果设置了spark.jars属性,sp ...
- Spring Boot - Error creating bean with name 'dataSource' defined in class path resource
看起来像最初的问题是与自动配置. 如果你不需要数据源,只需从自动配置过程中删除它: @EnableAutoConfiguration(exclude={DataSourceAutoConfigurat ...
- 错误 1 “Entities.PlanPrjEntity.PlanPrjs”不可访问,因为它受保护级别限制
本人第一次是用List做父类,写了一个类PlanPrjs,如下: class PlanPrj { public int ID { get; set; } public string Name { ge ...
- Android允许在UI线程中使用网络访问
StrictMode.ThreadPolicy policy=new StrictMode.ThreadPolicy.Builder().permitAll().build(); StrictMode ...
- ext Table中CommandColumn用法
<ext:CommandColumn Width="250" Header="功能菜单" ColumnID="test" Butto ...
- lua基于oopclass的属性节点类 和 集合类
--[[---------------------------------------------------------------------------- --@ Descrption: 属性节 ...
- RIPS PHP源码静态分析(转)
0x00背景 对于PHP代码审计的需求,我们当然需要一款好的php代码审计分析工具--RIPS,它使用了静态分析技术,能够自动化地挖掘PHP源代码潜在的安全漏洞如XSS ,sql注入,敏感信息泄漏,文 ...
- Docker 查看容器 IP 地址
查看Docker的底层信息. docker inspect 会返回一个 JSON 文件记录着 Docker 容器的配置和状态信息 docker inspect NAMES # 查看容器所有状态信息: ...
- 转载-reduceByKey和groupByKey的区别
原文链接-https://www.cnblogs.com/0xcafedaddy/p/7625358.html 先来看一下在PairRDDFunctions.scala文件中reduceByKey和g ...
- 安装LDAP用户认证
LDAP伺服器设定 1.安装 openldap-servers yum -y install openldap openldap-devel openldap-servers 2.建立 LDAP 密码 ...