https://my.oschina.net/itblog/blog/275294

摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程。

分析MapReduce执行过程

MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出。Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中。整个流程如图:

Mapper任务的执行过程详解

每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出。整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示。

在上图中,把Mapper任务的运行过程分为六个阶段。

  1. 第一阶段是把输入文件按照一定的标准分片(InputSplit),每个输入片的大小是固定的。默认情况下,输入片(InputSplit)的大小与数据块(Block)的大小是相同的。如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB。那么小的文件是一个输入片,大文件会分为两个数据块,那么是两个输入片。一共产生三个输入片。每一个输入片由一个Mapper进程处理。这里的三个输入片,会有三个Mapper进程处理。

  2. 第二阶段是对输入片中的记录按照一定的规则解析成键值对。有个默认规则是把每一行文本内容解析成键值对。“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。

  3. 第三阶段是调用Mapper类中的map方法。第二阶段中解析出来的每一个键值对,调用一次map方法。如果有1000个键值对,就会调用1000次map方法。每一次调用map方法会输出零个或者多个键值对。

  4. 第四阶段是按照一定的规则对第三阶段输出的键值对进行分区。比较是基于键进行的。比如我们的键表示省份(如北京、上海、山东等),那么就可以按照不同省份进行分区,同一个省份的键值对划分到一个区中。默认是只有一个区分区的数量就是Reducer任务运行的数量。默认只有一个Reducer任务。

  5. 第五阶段是对每个分区中的键值对进行排序。首先,按照键进行排序,对于键相同的键值对,按照值进行排序。比如三个键值对<2,2>、<1,3>、<2,1>,键和值分别是整数。那么排序后的结果是<1,3>、<2,1>、<2,2>。如果有第六阶段,那么进入第六阶段;如果没有,直接输出到本地的linux文件中。

  6. 第六阶段是对数据进行归约处理,也就是reduce处理。键相等的键值对会调用一次reduce方法。经过这一阶段,数据量会减少。归约后的数据输出到本地的linxu文件中。本阶段默认是没有的,需要用户自己增加这一阶段的代码

Reducer任务的执行过程详解

每个Reducer任务是一个java进程。Reducer任务接收Mapper任务的输出,归约处理后写入到HDFS中,可以分为如下图所示的几个阶段。

  1. 第一阶段是Reducer任务会主动从Mapper任务复制其输出的键值对。Mapper任务可能会有很多,因此Reducer会复制多个Mapper的输出。

  2. 第二阶段是把复制到Reducer本地数据,全部进行合并,即把分散的数据合并成一个大的数据。再对合并后的数据排序。

  3. 第三阶段是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对。最后把这些输出的键值对写入到HDFS文件中。

在整个MapReduce程序的开发过程中,我们最大的工作量是覆盖map函数和覆盖reduce函数。

键值对的编号

在对Mapper任务、Reducer任务的分析过程中,会看到很多阶段都出现了键值对,读者容易混淆,所以这里对键值对进行编号,方便大家理解键值对的变化情况,如下图所示。

在上图中,对于Mapper任务输入的键值对,定义为key1和value1。在map方法中处理后,输出的键值对,定义为key2和value2。reduce方法接收key2和value2,处理后,输出key3和value3。在下文讨论键值对时,可能把key1和value1简写为<k1,v1>,key2和value2简写为<k2,v2>,key3和value3简写为<k3,v3>。

以上内容来自:http://www.superwu.cn/2013/08/21/530/

-----------------------分------------------割----------------线-------------------------

例子:求每年最高气温

在HDFS中的根目录下有以下文件格式: /input.txt

2014010114
2014010216
2014010317
2014010410
2014010506
2012010609
2012010732
2012010812
2012010919
2012011023
2001010116
2001010212
2001010310
2001010411
2001010529
2013010619
2013010722
2013010812
2013010929
2013011023
2008010105
2008010216
2008010337
2008010414
2008010516
2007010619
2007010712
2007010812
2007010999
2007011023
2010010114
2010010216
2010010317
2010010410
2010010506
2015010649
2015010722
2015010812
2015010999
2015011023

比如:2010012325表示在2010年01月23日的气温为25度。现在要求使用MapReduce,计算每一年出现过的最大气温。

在写代码之前,先确保正确的导入了相关的jar包。我使用的是maven,可以到http://mvnrepository.com去搜索这几个artifactId。

此程序需要以Hadoop文件作为输入文件,以Hadoop文件作为输出文件,因此需要用到文件系统,于是需要引入hadoop-hdfs包;我们需要向Map-Reduce集群提交任务,需要用到Map-Reduce的客户端,于是需要导入hadoop-mapreduce-client-jobclient包;另外,在处理数据的时候会用到一些hadoop的数据类型例如IntWritable和Text等,因此需要导入hadoop-common包。于是运行此程序所需要的相关依赖有以下几个:

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.4.0</version>
</dependency>

包导好了后, 设计代码如下:

package com.abc.yarn;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Temperature {
    /**
     * 四个泛型类型分别代表:
     * KeyIn        Mapper的输入数据的Key,这里是每行文字的起始位置(0,11,...)
     * ValueIn      Mapper的输入数据的Value,这里是每行文字
     * KeyOut       Mapper的输出数据的Key,这里是每行文字中的“年份”
     * ValueOut     Mapper的输出数据的Value,这里是每行文字中的“气温”
     */
    static class TempMapper extends
            Mapper<LongWritable, Text, Text, IntWritable> {
        @Override
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            // 打印样本: Before Mapper: 0, 2000010115
            System.out.print("Before Mapper: " + key + ", " + value);
            String line = value.toString();
            String year = line.substring(0, 4);
            int temperature = Integer.parseInt(line.substring(8));
            context.write(new Text(year), new IntWritable(temperature));
            // 打印样本: After Mapper:2000, 15
            System.out.println(
                    "======" +
                    "After Mapper:" + new Text(year) + ", " + new IntWritable(temperature));
        }
    }     /**
     * 四个泛型类型分别代表:
     * KeyIn        Reducer的输入数据的Key,这里是每行文字中的“年份”
     * ValueIn      Reducer的输入数据的Value,这里是每行文字中的“气温”
     * KeyOut       Reducer的输出数据的Key,这里是不重复的“年份”
     * ValueOut     Reducer的输出数据的Value,这里是这一年中的“最高气温”
     */
    static class TempReducer extends
            Reducer<Text, IntWritable, Text, IntWritable> {
        @Override
        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            int maxValue = Integer.MIN_VALUE;
            StringBuffer sb = new StringBuffer();
            //取values的最大值
            for (IntWritable value : values) {
                maxValue = Math.max(maxValue, value.get());
                sb.append(value).append(", ");
            }
            // 打印样本: Before Reduce: 2000, 15, 23, 99, 12, 22, 
            System.out.print("Before Reduce: " + key + ", " + sb.toString());
            context.write(key, new IntWritable(maxValue));
            // 打印样本: After Reduce: 2000, 99
            System.out.println(
                    "======" +
                    "After Reduce: " + key + ", " + maxValue);
        }
    }     public static void main(String[] args) throws Exception {
        //输入路径
        String dst = "hdfs://localhost:9000/intput.txt";
        //输出路径,必须是不存在的,空文件加也不行。
        String dstOut = "hdfs://localhost:9000/output";
        Configuration hadoopConfig = new Configuration();
        
        hadoopConfig.set("fs.hdfs.impl", 
            org.apache.hadoop.hdfs.DistributedFileSystem.class.getName()
        );
        hadoopConfig.set("fs.file.impl",
            org.apache.hadoop.fs.LocalFileSystem.class.getName()
        );
        Job job = new Job(hadoopConfig);
        
        //如果需要打成jar运行,需要下面这句
        //job.setJarByClass(NewMaxTemperature.class);         //job执行作业时输入和输出文件的路径
        FileInputFormat.addInputPath(job, new Path(dst));
        FileOutputFormat.setOutputPath(job, new Path(dstOut));         //指定自定义的Mapper和Reducer作为两个阶段的任务处理类
        job.setMapperClass(TempMapper.class);
        job.setReducerClass(TempReducer.class);
        
        //设置最后输出结果的Key和Value的类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        //执行job,直到完成
        job.waitForCompletion(true);
        System.out.println("Finished");
    }
}

上面代码中,注意Mapper类的泛型不是java的基本类型,而是Hadoop的数据类型Text、IntWritable。我们可以简单的等价为java的类String、int。

代码中Mapper类的泛型依次是<k1,v1,k2,v2>。map方法的第二个形参是行文本内容,是我们关心的。核心代码是把行文本内容按照空格拆分,把每行数据中“年”和“气温”提取出来,其中“年”作为新的键,“温度”作为新的值,写入到上下文context中。在这里,因为每一年有多行数据,因此每一行都会输出一个<年份, 气温>键值对。

下面是控制台打印结果:

Before Mapper: 0, 2014010114======After Mapper:2014, 14
Before Mapper: 11, 2014010216======After Mapper:2014, 16
Before Mapper: 22, 2014010317======After Mapper:2014, 17
Before Mapper: 33, 2014010410======After Mapper:2014, 10
Before Mapper: 44, 2014010506======After Mapper:2014, 6
Before Mapper: 55, 2012010609======After Mapper:2012, 9
Before Mapper: 66, 2012010732======After Mapper:2012, 32
Before Mapper: 77, 2012010812======After Mapper:2012, 12
Before Mapper: 88, 2012010919======After Mapper:2012, 19
Before Mapper: 99, 2012011023======After Mapper:2012, 23
Before Mapper: 110, 2001010116======After Mapper:2001, 16
Before Mapper: 121, 2001010212======After Mapper:2001, 12
Before Mapper: 132, 2001010310======After Mapper:2001, 10
Before Mapper: 143, 2001010411======After Mapper:2001, 11
Before Mapper: 154, 2001010529======After Mapper:2001, 29
Before Mapper: 165, 2013010619======After Mapper:2013, 19
Before Mapper: 176, 2013010722======After Mapper:2013, 22
Before Mapper: 187, 2013010812======After Mapper:2013, 12
Before Mapper: 198, 2013010929======After Mapper:2013, 29
Before Mapper: 209, 2013011023======After Mapper:2013, 23
Before Mapper: 220, 2008010105======After Mapper:2008, 5
Before Mapper: 231, 2008010216======After Mapper:2008, 16
Before Mapper: 242, 2008010337======After Mapper:2008, 37
Before Mapper: 253, 2008010414======After Mapper:2008, 14
Before Mapper: 264, 2008010516======After Mapper:2008, 16
Before Mapper: 275, 2007010619======After Mapper:2007, 19
Before Mapper: 286, 2007010712======After Mapper:2007, 12
Before Mapper: 297, 2007010812======After Mapper:2007, 12
Before Mapper: 308, 2007010999======After Mapper:2007, 99
Before Mapper: 319, 2007011023======After Mapper:2007, 23
Before Mapper: 330, 2010010114======After Mapper:2010, 14
Before Mapper: 341, 2010010216======After Mapper:2010, 16
Before Mapper: 352, 2010010317======After Mapper:2010, 17
Before Mapper: 363, 2010010410======After Mapper:2010, 10
Before Mapper: 374, 2010010506======After Mapper:2010, 6
Before Mapper: 385, 2015010649======After Mapper:2015, 49
Before Mapper: 396, 2015010722======After Mapper:2015, 22
Before Mapper: 407, 2015010812======After Mapper:2015, 12
Before Mapper: 418, 2015010999======After Mapper:2015, 99
Before Mapper: 429, 2015011023======After Mapper:2015, 23
Before Reduce: 2001, 12, 10, 11, 29, 16, ======After Reduce: 2001, 29
Before Reduce: 2007, 23, 19, 12, 12, 99, ======After Reduce: 2007, 99
Before Reduce: 2008, 16, 14, 37, 16, 5, ======After Reduce: 2008, 37
Before Reduce: 2010, 10, 6, 14, 16, 17, ======After Reduce: 2010, 17
Before Reduce: 2012, 19, 12, 32, 9, 23, ======After Reduce: 2012, 32
Before Reduce: 2013, 23, 29, 12, 22, 19, ======After Reduce: 2013, 29
Before Reduce: 2014, 14, 6, 10, 17, 16, ======After Reduce: 2014, 17
Before Reduce: 2015, 23, 49, 22, 12, 99, ======After Reduce: 2015, 99
Finished

执行结果:

对分析的验证

从打印的日志中可以看出:

  • Mapper的输入数据(k1,v1)格式是:默认的按行分的键值对<0, 2010012325>,<11, 2012010123>...

  • Reducer的输入数据格式是:把相同的键合并后的键值对:<2001, [12, 32, 25...]>,<2007, [20, 34, 30...]>...

  • Reducer的输出数(k3,v3)据格式是:经自己在Reducer中写出的格式:<2001, 32>,<2007, 34>...

其中,由于输入数据太小,Map过程的第1阶段这里不能证明。但事实上是这样的。

结论中第一点验证了Map过程的第2阶段:“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。

另外,通过Reduce的几行

Before Reduce: 2001, 12, 10, 11, 29, 16, ======After Reduce: 2001, 29
Before Reduce: 2007, 23, 19, 12, 12, 99, ======After Reduce: 2007, 99
Before Reduce: 2008, 16, 14, 37, 16, 5, ======After Reduce: 2008, 37
Before Reduce: 2010, 10, 6, 14, 16, 17, ======After Reduce: 2010, 17
Before Reduce: 2012, 19, 12, 32, 9, 23, ======After Reduce: 2012, 32
Before Reduce: 2013, 23, 29, 12, 22, 19, ======After Reduce: 2013, 29
Before Reduce: 2014, 14, 6, 10, 17, 16, ======After Reduce: 2014, 17
Before Reduce: 2015, 23, 49, 22, 12, 99, ======After Reduce: 2015, 99

可以证实Map过程的第4阶段:先分区,然后对每个分区都执行一次Reduce(Map过程第6阶段)。

对于Mapper的输出,前文中提到:如果没有Reduce过程,Mapper的输出会直接写入文件。于是我们把Reduce方法去掉(注释掉第95行即可)。

再执行,下面是控制台打印结果:

Before Mapper: 0, 2014010114======After Mapper:2014, 14
Before Mapper: 11, 2014010216======After Mapper:2014, 16
Before Mapper: 22, 2014010317======After Mapper:2014, 17
Before Mapper: 33, 2014010410======After Mapper:2014, 10
Before Mapper: 44, 2014010506======After Mapper:2014, 6
Before Mapper: 55, 2012010609======After Mapper:2012, 9
Before Mapper: 66, 2012010732======After Mapper:2012, 32
Before Mapper: 77, 2012010812======After Mapper:2012, 12
Before Mapper: 88, 2012010919======After Mapper:2012, 19
Before Mapper: 99, 2012011023======After Mapper:2012, 23
Before Mapper: 110, 2001010116======After Mapper:2001, 16
Before Mapper: 121, 2001010212======After Mapper:2001, 12
Before Mapper: 132, 2001010310======After Mapper:2001, 10
Before Mapper: 143, 2001010411======After Mapper:2001, 11
Before Mapper: 154, 2001010529======After Mapper:2001, 29
Before Mapper: 165, 2013010619======After Mapper:2013, 19
Before Mapper: 176, 2013010722======After Mapper:2013, 22
Before Mapper: 187, 2013010812======After Mapper:2013, 12
Before Mapper: 198, 2013010929======After Mapper:2013, 29
Before Mapper: 209, 2013011023======After Mapper:2013, 23
Before Mapper: 220, 2008010105======After Mapper:2008, 5
Before Mapper: 231, 2008010216======After Mapper:2008, 16
Before Mapper: 242, 2008010337======After Mapper:2008, 37
Before Mapper: 253, 2008010414======After Mapper:2008, 14
Before Mapper: 264, 2008010516======After Mapper:2008, 16
Before Mapper: 275, 2007010619======After Mapper:2007, 19
Before Mapper: 286, 2007010712======After Mapper:2007, 12
Before Mapper: 297, 2007010812======After Mapper:2007, 12
Before Mapper: 308, 2007010999======After Mapper:2007, 99
Before Mapper: 319, 2007011023======After Mapper:2007, 23
Before Mapper: 330, 2010010114======After Mapper:2010, 14
Before Mapper: 341, 2010010216======After Mapper:2010, 16
Before Mapper: 352, 2010010317======After Mapper:2010, 17
Before Mapper: 363, 2010010410======After Mapper:2010, 10
Before Mapper: 374, 2010010506======After Mapper:2010, 6
Before Mapper: 385, 2015010649======After Mapper:2015, 49
Before Mapper: 396, 2015010722======After Mapper:2015, 22
Before Mapper: 407, 2015010812======After Mapper:2015, 12
Before Mapper: 418, 2015010999======After Mapper:2015, 99
Before Mapper: 429, 2015011023======After Mapper:2015, 23
Finished

再来看看执行结果:

结果还有很多行,没有截图了。

由于没有执行Reduce操作,因此这个就是Mapper输出的中间文件的内容了。

从打印的日志可以看出:

  • Mapper的输出数据(k2, v2)格式是:经自己在Mapper中写出的格式:<2010, 25>,<2012, 23>...

从这个结果中可以看出,原数据文件中的每一行确实都有一行输出,那么Map过程的第3阶段就证实了。

从这个结果中还可以看出,“年份”已经不是输入给Mapper的顺序了,这也说明了在Map过程中也按照Key执行了排序操作,即Map过程的第5阶段

Hadoop MapReduce执行过程详解(带hadoop例子)的更多相关文章

  1. Hadoop学习之Mapreduce执行过程详解

    一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: ...

  2. Hadoop MapReduce执行过程实例分析

    1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...

  3. mysql中SQL执行过程详解与用于预处理语句的SQL语法

    mysql中SQL执行过程详解 客户端发送一条查询给服务器: 服务器先检查查询缓存,如果命中了缓存,则立刻返回存储在缓存中的结果.否则进入下一阶段. 服务器段进行SQL解析.预处理,在优化器生成对应的 ...

  4. ping命令执行过程详解

    [TOC] ping命令执行过程详解 机器A ping 机器B 同一网段 ping通知系统建立一个固定格式的ICMP请求数据包 ICMP协议打包这个数据包和机器B的IP地址转交给IP协议层(一组后台运 ...

  5. MySQL 语句执行过程详解

    MySQL 原理篇 MySQL 索引机制 MySQL 体系结构及存储引擎 MySQL 语句执行过程详解 MySQL 执行计划详解 MySQL InnoDB 缓冲池 MySQL InnoDB 事务 My ...

  6. Hadoop MapReduce 一文详解MapReduce及工作机制

    @ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapRe ...

  7. Hadoop mapreduce执行过程涉及api

    资源的申请,分配过程略过,从开始执行开始. mapper阶段: 首先调用默认的PathFilter进行文件过滤,确定哪些输入文件是需要的哪些是不需要的,然后调用inputFormat的getSplit ...

  8. Java的初始化块及执行过程详解

    问题:Java对象初始化方式主要有哪几种?分别是什么?针对上面的问题,想必大家脑海中首先浮现出的答案是构造器,没错,构造器是Java中常用的对象初始化方式. 还有一种与构造器作用非常相似的是初始化块, ...

  9. 一条 sql 的执行过程详解

    写操作执行过程 如果这条sql是写操作(insert.update.delete),那么大致的过程如下,其中引擎层是属于 InnoDB 存储引擎的,因为InnoDB 是默认的存储引擎,也是主流的,所以 ...

随机推荐

  1. 沙盒解决方案解决SharePoint 2013 以其他身份登陆的问题

    众所周知,SharePoint 2013没有像SharePoint 2010那样有一个叫"以其他身份登录"的菜单项. 当然解决方案也很多,比如你可以直接修改Welcome.ascx ...

  2. Atitit 软件国际化原理与概论

    Atitit 软件国际化原理与概论 语言和文化习俗因地域不同而差别很大.对某一特定的地域的 语言环境称为"locale".它不仅包括语言和货币单位,而且还包括 数字标示格式, 日期 ...

  3. 用NSAttributedString实现简单的图文混排

    iOS7以后,因为TextKit的强大,可以用NSAttributedString很方便的实现图文混排(主要是利用了NSTextAttachment). 关于Textkit的牛逼之处,可以参考objc ...

  4. React Native知识9-ScrollView组件

    一个包装了平台的ScrollView(滚动视图)的组件,同时还集成了触摸锁定的“响应者”系统. 记住ScrollView必须有一个确定的高度才能正常工作,因为它实际上所做的就是将一系列不确定高度的子组 ...

  5. Dagger2 (二) 进阶篇

    一.作用域Scope 之前了解RoboGuice的时候,我们知道它默认给我们提供了几个注解,ContextSingleton和Singleton,但是Dagger2更为灵活,只有javax包中提供的S ...

  6. 生成freeswitch事件的几种方式

    本文描述了生成freeswitch事件的几种方式,这里记录下,也方便我以后查阅. 操作系统:debian8.5_x64 freeswitch 版本 : 1.6.8 在freeswitch代码中加入事件 ...

  7. freeswitch对接其它SIP设备

    这几天用到freeswitch对接其它设备方面的知识,这里整理下,也方便我以后查阅. 操作系统:debian8.5_x64 freeswitch 版本 : 1.6.8 一.freeswitch作为被叫 ...

  8. 使用virtualenv搭建python3开发环境

    问题描述 环境: CentOS6.5 想在此环境下使用python3进行开发,但CentOS6.5默认的python环境是2.6.6版本. 之前的做法是直接从源码安装python3,替换掉现有的开发环 ...

  9. EA方法论

    1 EA的定义 Enterprise Architecture,企业架构,简称EA.根据开放群组的业务领导层IT架构指引:“有效的企业架构(Enterprise Architecture,EA)对企业 ...

  10. mysql笔记

    查看当前版本: SELECT VERSION(); 查看当前时间: SELECT NOW(); 查看当前当前用户: SELECT USER(); 创建数据库:CREATE DATABASE 数据库名字 ...