论文总结(negFIN: An efficient algorithm for fast mining frequent itemsets)
一、论文整体思路:
作者提出了一种基于前缀树的数据结构,NegNodeset,其实是对之前前缀树的一种改进,主要区别在于采用了位图编码,通过这种数据结构产生的算法称为negFIN。
negFIN算法高效有三个原因
二、问题定义
I= {i1,i2,…, init} 表示事务数据库所有项的集合,T表示每个事务,T⊆I ,DB = {T1,T2,…, Tnt} 是所有事务的集合
P称为k-项集,如果P⊆T ,那么事务T包含了项集P,support(P)是DB中包含P的百分比,如果support(P)大于min-support
我们就称P为频繁项集,频繁项集是2的nit 次方,nit = |I| 。
三、之前贡献
主要对前缀树的研究,结构1)Node-list,2)N-list,3)Nodeset,4)DisffNodeset (***先理解下前缀树和哈希树)
1) Node-list和N-list是通过对节点进行先序和后序排列,这两种数据结构产生的算法分别是PPV和PrePost频繁项集挖掘算法,
这两个算法的缺点消耗了大量内存;
2)对于这种情况,数据结构Nodeset将其进行改进,k-项集的获得通过取k-1项集的交集,算法为FIN,确定是对于一些数据集Nodeset基数太大;
3)为了将其进行改进,DiffNodest数据结构提出,k-项集的获得两个不同的k-1项集获得,算法为dFIN,算法的更快了。
4)文中提出了NegNodeset为了实现计算两个不同的DiffNodesets花费时间较长,主要利用的是位图,提出的算法negFIN;
四、相关工作
频繁项集挖掘算法
1)通过产生候选项集
比如Apriori算法,以及一些其他的算法,这种方法的主要缺点是需要多次扫描数据库。
2)模式增长方法
这种方式不会产生候选项集,也避免了多次扫描数据库,包括FP-tree和FP-growth算法,缺点:对于稀疏的数据集效率低,数据结构复杂。
3)前缀树方法
五、基本术语
F1频繁项集的集合,例如F1 = {e, b, a, c, d} ,
L1是根据支持度进行非降序排列的频繁项集L1 = [e, d, c, b, a] ,L1 = [i0,i1,…, inf - 1] ,nf=|F1|
k-项集P,Pk = ik…i2i1 ,ik>...>i2>i1
例如P = {e, b, d} ,P3 = bde ,对Pk进行位图编码BMC(Pk) = bnf - 1…b1b0 ,这里需要注意的是
BMC(node-path)分为两部分,主要部分和无关部分
论文总结(negFIN: An efficient algorithm for fast mining frequent itemsets)的更多相关文章
- 【HEVC帧间预测论文】P1.7 Content Based Hierarchical Fast Coding Unit Decision Algorithm
Content Based Hierarchical Fast Coding Unit Decision Algorithm For HEVC <HEVC标准介绍.HEVC帧间预测论文笔记> ...
- 论文阅读笔记二十六:Fast R-CNN (ICCV2015)
论文源址:https://arxiv.org/abs/1504.08083 参考博客:https://blog.csdn.net/shenxiaolu1984/article/details/5103 ...
- 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...
- 论文翻译:2020_TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
论文地址:TinyLSTMs:助听器的高效神经语音增强 音频地址:https://github.com/Bose/efficient-neural-speech-enhancement 引用格式:Fe ...
- algorithm@ Matrix fast power
一. 什么是快速幂: 快速幂顾名思义,就是快速算某个数的多少次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高.一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次 ...
- 【论文阅读】A practical algorithm for distributed clustering and outlier detection
文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...
- 第八周论文学习03 An Efficient Tree-based Power Saving Scheme for Wireless Sensor Networks with Mobile Sink
来源:IEEE Sensors Journal Year: 2016, Volume: 16, Issue: 20 Pages: 7545 - 7557, DOI: 10.1109/JSEN.2016 ...
- 论文总结(Frequent Itemsets Mining With Differential Privacy Over Large-Scale Data)
一.论文目标:将差分隐私和频繁项集挖掘结合,主要针对大规模数据. 二.论文的整体思路: 1)预处理阶段: 对于大的数据集,进行采样得到采样数据集并计算频繁项集,估计样本数据集最大长度限制,然后再缩小源 ...
- Apriori algorithm
本文是个人对spmf中example1. mining frequent itemsets by using the apriori algorithm的学习. What is Apriori? A ...
随机推荐
- vue中组件绑定事件时是否加.native
组件绑定事件时 1. 普通组件绑定事件不能添加.native, 添加后事件失效 2. 自定义组件绑定事件需要添加.native, 否则事件无效 <template> <!-- < ...
- IntelliJ cannot log in to GitHub上传github报错解决
重装系统,新装的Intellij IDEA上新建的项目上传github失败,报错: invalid authentication token ... 此处多为本地git用户的用户名/邮箱,与之前设置的 ...
- HTML元素类别及转换
位置特性分类元素分为三类:块级元素,行内元素,行级块元素 1.块级元素(block) 特点: (1)可以设置宽高.内.外边距: (2)独占一行(即前后均有换行 ...
- Codeforces 714A 朋友聚会
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6395268.html A. Meeting of Old Friends time limit p ...
- RMQ--ST表
RMQ即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值. ST表既ST算法是一个非常有名的在线处 ...
- 如何判断是否为同一个App,Ionic3如何修改包名
如何判断是否同一个App 使用Ionic3创建了两个项目demo1.demo2,然后使用同一个JDK,生成了两个不同的keystore证书. 结果在手机端安装的时候,先安装demo1,没有任何替换的提 ...
- POI如何自动调整Excel单元格中字体的大小
问题 目的是要将Excel中的文字全部显示出来,可以设置对齐格式为[缩小字体填充],但是这样的话只能展示出一行数据,字体会变得很小.还有一种办法,设置对齐格式为[自动换行],然后让单元格中的字体自动调 ...
- mysql 导入sql 2006 - mysql server has gone away 导入
解决办法:找到你的mysql目录下的my.ini配置文件,加入以下代码 max_allowed_packet=500M wait_timeout=288000 interactive_timeout ...
- 【POJ 1001】Exponentiation (高精度乘法+快速幂)
BUPT2017 wintertraining(15) #6A 题意 求\(R^n\) ( 0.0 < R < 99.999 )(0 < n <= 25) 题解 将R用字符串读 ...
- LOJ2557. 「CTSC2018」组合数问题
LOJ2557. 「CTSC2018」组合数问题 这道题是我第一道自己做完的题答题.考场上面我只拿了41分,完全没有经验.现在才发现其实掌握了大概的思路还是不难. 首先模拟退火,通过了1,2,6,9, ...