Luogu P1967 货车运输
这题是知道了正解做法才写的..
求每两点间最小权值最大的路径,本来我以为要每个点都跑一遍dij(?),后来意识到生成树好像是用来找这个的( ´▽`)
然后我问dtxdalao对不对,他说“我记得这道题好像要用倍增”(我:???剧透会被关进小黑屋的)
其实就是最大生成树是随便建的,然后对于每两点,用倍增求他们的lca,沿途更新最小的边权即为答案
其实我也没怎么debug (i--这种问题就不说了吧)
这题思路还算比较清晰,明白做法之后就分别把几个算法写出来就行了,
注意:lca中最小边权的更新可能在跳到深度相同/同时倍增/最后求lca的路上,所以...反正多更新几次就没错啦w
#include<cstdio>
#include<algorithm>
#include<cmath>
#define MogeKo qwq
using namespace std;
const int maxn = ;
int n,m,q,x,y;
int cnt,head[maxn],to[maxn],nxt[maxn],val[maxn];
int fa[maxn],dpth[maxn],p[maxn][],w[maxn][]; void add(int x,int y,int z) {
to[++cnt] = y;
nxt[cnt] = head[x];
head[x] = cnt;
val[cnt] = z;
} struct edg {
int l,r,c;
} a[maxn]; bool cmp(edg A,edg B) {
return A.c > B.c;
} int getfa(int x) {
if(fa[x] == x)return x;
else return fa[x] = getfa(fa[x]);
} void kruskal() {
sort(a+,a+m+,cmp);
for(int i = ; i <= m; i++) {
int xx = getfa(a[i].l);
int yy = getfa(a[i].r);
if(xx == yy)continue;
fa[xx] = yy;
add(xx,yy,a[i].c);
add(yy,xx,a[i].c);
}
} void dfs(int u,int fa) {
for(int i = ; ( << i) <= dpth[u]; i++) {
p[u][i] = p[p[u][i-]][i-];
w[u][i] = min(w[u][i-],w[p[u][i-]][i-]);
}
for(int i = head[u]; i; i = nxt[i]) {
int v = to[i];
if(v == fa)continue;
dpth[v] = dpth[u]+;
p[v][] = u;
w[v][] = val[i];
dfs(v,u);
}
} int lca(int a,int b) {
int ans = ;
if(dpth[a] < dpth[b])
swap(a,b);
for(int i = log2(dpth[a]); i >= ; i--)
if(dpth[p[a][i]] >= dpth[b]) {
ans = min(ans,w[a][i]);
a = p[a][i];
}
if(a == b)return ans;
for(int i = log2(dpth[a]); i >= ; i--)
if(p[a][i] != p[b][i]) {
ans = min(ans,min(w[a][i],w[b][i]));
a = p[a][i];
b = p[b][i];
}
ans = min(ans,min(w[a][],w[b][]));
return ans;
} int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= n; i++)
fa[i] = i;
for(int i = ; i <= m; i++)
scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].c);
kruskal();
for(int i = ; i <= n; i++)
if(fa[i] == i){
dpth[i] = ;
dfs(i,);
}
scanf("%d",&q);
while(q--) {
scanf("%d%d",&x,&y);
int xx = getfa(x);
int yy = getfa(y);
if(xx != yy) {
printf("-1\n");
continue;
}
printf("%d\n",lca(x,y));
}
return ;
}
Luogu P1967 货车运输的更多相关文章
- Luogu P1967 货车运输(Kruskal重构树)
P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...
- LUOGU P1967 货车运输(最大生成树+树剖+线段树)
传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算 ...
- Luogu P1967 货车运输 倍增+最大生成树
看见某大佬在做,决定补一发题解$qwq$ 首先跑出最大生成树(注意有可能不连通),然后我们要求的就是树上两点间路径上的最小边权. 我们用倍增的思路跑出来$w[u][j]$,表示$u$与的它$2^j$的 ...
- 洛谷 P1967 货车运输
洛谷 P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在 ...
- P1967 货车运输
P1967 货车运输最大生成树+lca+并查集 #include<iostream> #include<cstdio> #include<queue> #inclu ...
- kruskal - 倍增 - 并查集 - Luogu 1967 货车运输
P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...
- 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增
倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...
- 【杂题总汇】NOIP2013(洛谷P1967) 货车运输
[洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...
- [luogu 1967]货车运输
货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情 ...
随机推荐
- POJ3683 Priest John's Busiest Day(2-SAT)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11049 Accepted: 3767 Special Judge ...
- 中文代码示例之Electron桌面应用开发初体验
参考: 打造你的第一个 Electron 应用 首先运行下面在目录下创建package.json: $ npm init 去掉了一些无关项后内容如下: { "name": &quo ...
- SAP MM 销售订单库存与普通库存之间相互转换过账后对于EBEWH以及MBEWH表的更新
SAP MM 销售订单库存与普通库存之间相互转换过账后对于EBEWH以及MBEWH表的更新 1,DEMO数据 物料号:1300009995 工厂:2160 销售订单号/item号:0010097627 ...
- 使用hibernate报错java.lang.ExceptionInInitializerError的处理方法
今天使用hibernate搭建持久层出现一个问题 原因在于 在创建user liberty时同时勾选了System Library(added to the boot class )path
- Tars 服务调服务
1,创建一个 tars 服务工程 2,把需要调用的服务的 客户端接口文件 拷贝到当前服务 3,构建通信器 CommunicatorConfig 调用,如果是 springboot 开发客户端可以使用注 ...
- ORACLE中Scalar subquery Caching的hash table大小测试浅析
前阵子总结了这篇"ORACLE当中自定义函数性优化浅析"博客,里面介绍了标量子查询缓存(scalar subquery caching),如果使用标量子查询缓存,ORACLE会 ...
- MySQL状态变量Aborted_connects与Aborted_clients浅析
关于MySQL的状态变量Aborted_clients & Aborted_connects分别代表的意义,以及哪些情况或因素会导致这些状态变量变化呢?下文通过实验测试来验证一下,首先我们来看 ...
- php学习----运算符
PHP 1.运算符 加减乘除与数学运算无异 但PHP的赋值运算符有两种,分别是: (1)"=":把右边表达式的值赋给左边的运算数.它将右边表达式值复制一份,交给左边的运算数.换而言 ...
- GitLab安装及使用
GitLab是一个利用 Ruby on Rails 开发的开源应用程序,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目. GitLab拥有与Github类似的功能,能够浏览 ...
- virtualbox+ievms:还你一个原装IE8
在web开发中,不可避免的一件事是浏览器兼容性问题,你永远无法想象项目正式上线后,坐在电脑前操作这套系统的人用的是什么版本的浏览器,IE(7,8,...),360,Chrome,火狐等,后面几个还好说 ...