A:即求长度为偶数的异或和为0的区间个数,对前缀异或和用桶记录即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 300010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N],cnt[1<<20][2];
ll ans;
signed main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif
n=read();
for (int i=1;i<=n;i++) a[i]=a[i-1]^read();
cnt[0][0]=1;
for (int i=1;i<=n;i++)
{
ans=ans+cnt[a[i]][i&1];
cnt[a[i]][i&1]++;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  B:显然如果有解,答案一定不大于2,因为原串是回文串,找到第一个不是回文串的前缀和对其对应后缀切掉并交换即可。无解直接判断是否字母都相同或只有最中间字母不同。然后只需要check是否为1,暴力枚举切割点暴力判断即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 5010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n;
char s[N],a[N];
signed main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif
scanf("%s",s+1);n=strlen(s+1);
if (n==1) {cout<<"Impossible";return 0;}
bool flag=1;
for (int i=2;i<=n;i++) if (s[i]!=s[1]) {flag=0;break;}
if (flag) {cout<<"Impossible";return 0;}
if (n&1)
{
bool flag=1;
for (int i=2;i<=n;i++) if (s[i]!=s[1]&&i!=(n+1)/2) {flag=0;break;}
if (flag) {cout<<"Impossible";return 0;}
}
for (int i=1;i<n;i++)
{
for (int j=1;j<=n-i;j++) a[j]=s[j+i];
for (int j=n-i+1;j<=n;j++) a[j]=s[j-(n-i)];
bool flag=1;
for (int j=1;j<=n;j++) if (a[j]!=a[n-j+1]) {flag=0;break;}
if (!flag) continue;
for (int j=1;j<=n;j++) if (a[j]!=s[j]) {cout<<1;return 0;}
}
cout<<2;
return 0;
//NOTICE LONG LONG!!!!!
}

  D:显然枚举两点路径上有多少个点,选出这些点并排列,给路径上每条边插板分配权值,剩余边权值任意取。只剩下一个问题,就是如何计算固定这条路径后,树的形态个数。考虑将这条边缩点,一条边连接某两个点的方案数是1,而连接某个点和这条链的方案数则是其链长。将链长作为这个点的权值,其余点权值为1,于是我们要统计的东西相当于缩点后每棵树的所有点权值度数之积的和。注意到出现了度数,考虑prufer序列。序列中每个点出现次数=其度数-1,并且由于要统计所有树,每种对应的prufer序列都存在。这样由分配律可得方案数即为(i+1)*nn-2-i,其中i为路径上点的个数。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a,b,fac[N],inv[N],ans;
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#endif
n=read(),m=read();read(),read();
fac[0]=1;for (int i=1;i<=N-10;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=N-10;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=1;i<=N-10;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
for (int i=1;i<n;i++)
{
int x;if (i==n-1) x=1;else x=1ll*(i+1)*ksm(n,n-2-i)%P;
x=1ll*x*C(m-1,i-1)%P*C(n-2,i-1)%P*ksm(m,n-i-1)%P*fac[i-1]%P;
ans=(ans+x)%P;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  E:傻逼题,要是先开E而不是C说不定就码完了。对模数的质因子分别记录次数即可,线段树瞎维护。质因子的次幂可以预处理一下,略卡常。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,P,a[N],q,L[N<<2],R[N<<2],ans[N<<2],p[12],u[12][2][1000010],cnt;
ll lazy[N<<2][12];
int ksm(int a,ll k)
{
return 1ll*u[a][0][k%1000000]*u[a][1][k/1000000]%P;
}
void exgcd(int &x,int &y,int a,int b)
{
if (b==0)
{
x=1,y=0;
return;
}
exgcd(x,y,b,a%b);
int t=x;x=y;y=t-a/b*x;
}
int inv(int a)
{
int x,y;
exgcd(x,y,a,P);
return (x%P+P)%P;
}
void up(int k){ans[k]=(ans[k<<1]+ans[k<<1|1])%P;}
void update(int k)
{
ans[k]=lazy[k][0];
for (int i=1;i<=cnt;i++) ans[k]=1ll*ans[k]*ksm(i,lazy[k][i])%P;
}
void down(int k,int i)
{
lazy[k<<1][i]+=lazy[k][i],lazy[k<<1|1][i]+=lazy[k][i];
ans[k<<1]=1ll*ans[k<<1]*ksm(i,lazy[k][i])%P,ans[k<<1|1]=1ll*ans[k<<1|1]*ksm(i,lazy[k][i])%P;
lazy[k][i]=0;
}
void down(int k)
{
lazy[k<<1][0]=1ll*lazy[k<<1][0]*lazy[k][0]%P;
lazy[k<<1|1][0]=1ll*lazy[k<<1|1][0]*lazy[k][0]%P;
ans[k<<1]=1ll*ans[k<<1]*lazy[k][0]%P;
ans[k<<1|1]=1ll*ans[k<<1|1]*lazy[k][0]%P;
lazy[k][0]=1;
for (int i=1;i<=cnt;i++)
down(k,i);
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;lazy[k][0]=1;
if (l==r)
{
ans[k]=lazy[k][0]=a[l];ans[k]%=P;
for (int i=1;i<=cnt;i++)
while (lazy[k][0]%p[i]==0)
lazy[k][0]/=p[i],lazy[k][i]++;
return;
}
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
up(k);
}
void add(int k,int l,int r,int i,int x,int u)
{
if (L[k]==l&&R[k]==r) {ans[k]=1ll*ans[k]*u%P;lazy[k][i]+=x;return;}
down(k,i);
int mid=L[k]+R[k]>>1;
if (r<=mid) add(k<<1,l,r,i,x,u);
else if (l>mid) add(k<<1|1,l,r,i,x,u);
else add(k<<1,l,mid,i,x,u),add(k<<1|1,mid+1,r,i,x,u);
up(k);
}
void mul(int k,int l,int r,int x)
{
if (L[k]==l&&R[k]==r) {ans[k]=1ll*ans[k]*x%P;lazy[k][0]=1ll*lazy[k][0]*x%P;return;}
down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) mul(k<<1,l,r,x);
else if (l>mid) mul(k<<1|1,l,r,x);
else mul(k<<1,l,mid,x),mul(k<<1|1,mid+1,r,x);
up(k);
}
void add(int k,int p,int i,int x)
{
if (L[k]==R[k]) {lazy[k][i]+=x;update(k);return;}
down(k,i);
int mid=L[k]+R[k]>>1;
if (p<=mid) add(k<<1,p,i,x);else add(k<<1|1,p,i,x);
up(k);
}
void mul(int k,int p,int x)
{
if (L[k]==R[k]) {lazy[k][0]=1ll*lazy[k][0]*x%P;update(k);return;}
down(k);
int mid=L[k]+R[k]>>1;
if (p<=mid) mul(k<<1,p,x);else mul(k<<1|1,p,x);
up(k);
}
int query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return ans[k];
down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) return query(k<<1,l,r);
else if (l>mid) return query(k<<1|1,l,r);
else return (query(k<<1,l,mid)+query(k<<1|1,mid+1,r))%P;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
const char LL[]="%I64d\n";
#endif
n=read(),P=read();
int v=P;
for (int i=2;i*i<=v;i++)
if (v%i==0)
{
p[++cnt]=i;
while (v%i==0) v/=i;
}
if (v>1) p[++cnt]=v;
for (int i=1;i<=cnt;i++)
{
u[i][0][0]=1;
for (int j=1;j<=1000000;j++) u[i][0][j]=1ll*u[i][0][j-1]*p[i]%P;
u[i][1][0]=1;
for (int j=1;j<=1000000;j++) u[i][1][j]=1ll*u[i][1][j-1]*u[i][0][1000000]%P;
}
for (int i=1;i<=n;i++) a[i]=read();
build(1,1,n);
q=read();
while (q--)
{
int op=read();
if (op==1)
{
int l=read(),r=read(),x=read();
for (int i=1;i<=cnt;i++)
{
int t=0;
while (x%p[i]==0) t++,x/=p[i];
if (t) add(1,l,r,i,t,ksm(i,t));
}
mul(1,l,r,x);
}
if (op==2)
{
int u=read(),x=read();
for (int i=1;i<=cnt;i++)
{
int t=0;
while (x%p[i]==0) t++,x/=p[i];
if (t) add(1,u,i,-t);
}
mul(1,u,inv(x));
}
if (op==3)
{
int l=read(),r=read();
printf("%d\n",query(1,l,r));
}
}
return 0;
//NOTICE LONG LONG!!!!!
}

  C实在不想补。

  result:rank 37 rating +142

  F:先考虑一维情况怎么做。一些点在序列上连续相当于点数-边数(即相邻两点同时被选)=1,考虑在值域上不断移动右端点,用线段树维护每个后缀区间的点数-边数的值。由于每次只是对每个区间都增加该右端点,考虑该点对每个区间的影响,显然根据其相邻两数将值域分成几段,分别用线段树区间加即可。因为点数-边数>=1,维护区间最小值及个数即可统计答案。

  拓展到二维,考虑使用同样的做法,但需要保证选出的点构成树。一个自然的想法是由于已经要求点数-边数=1,只要让选出的点构成连通块即可,但这个东西没有任何单调性。事实上注意到只要不形成环,加上点数-边数=1,也可以保证这是一棵树,而这个东西则是单调的。使用双指针,枚举右端点,找到最靠前的满足不构成环的左端点即可,可以LCT实现带删边并查集。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
#define lself tree[tree[k].fa].ch[0]
#define rself tree[tree[k].fa].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[1010][1010],near[N][4];
ll ans;
struct data{int ch[2],fa,rev;
}tree[N];
void rev(int k){if (k) swap(lson,rson),tree[k].rev^=1;}
void down(int k){if (tree[k].rev) rev(lson),rev(rson),tree[k].rev=0;}
int whichson(int k){return rself==k;}
bool isroot(int k){return lself!=k&&rself!=k;}
void push(int k){if (!isroot(k)) push(tree[k].fa);down(k);}
void move(int k)
{
int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k);
if (!isroot(fa)) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf;
tree[fa].ch[p]=tree[k].ch[!p],tree[tree[k].ch[!p]].fa=fa;
tree[k].ch[!p]=fa,tree[fa].fa=k;
}
void splay(int k)
{
push(k);
while (!isroot(k))
{
int fa=tree[k].fa;
if (!isroot(fa))
if (whichson(fa)^whichson(k)) move(k);
else move(fa);
move(k);
}
}
void access(int k){for (int t=0;k;t=k,k=tree[k].fa) splay(k),tree[k].ch[1]=t;}
int findroot(int k){if (!k) return 0;access(k);splay(k);for (;lson;k=lson) down(k);splay(k);return k;}
void makeroot(int k){access(k),splay(k),rev(k);}
void link(int x,int y){makeroot(x);tree[x].fa=y;}
void cut(int x,int y){makeroot(x),access(y),splay(y);tree[y].ch[0]=tree[x].fa=0;}
int L[N<<2],R[N<<2],sum[N<<2],top[N<<2],lazy[N<<2];
void up(int k)
{
if (top[k<<1]==top[k<<1|1])
{
top[k]=top[k<<1];
sum[k]=sum[k<<1]+sum[k<<1|1];
}
else if (top[k<<1]<top[k<<1|1]) top[k]=top[k<<1],sum[k]=sum[k<<1];
else top[k]=top[k<<1|1],sum[k]=sum[k<<1|1];
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) {sum[k]=1;return;}
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
up(k);
}
void Down(int k)
{
top[k<<1]+=lazy[k],top[k<<1|1]+=lazy[k];
lazy[k<<1]+=lazy[k],lazy[k<<1|1]+=lazy[k];
lazy[k]=0;
}
void add(int k,int l,int r,int op)
{
if (L[k]==l&&R[k]==r) {lazy[k]+=op;top[k]+=op;return;}
if (lazy[k]) Down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) add(k<<1,l,r,op);
else if (l>mid) add(k<<1|1,l,r,op);
else add(k<<1,l,mid,op),add(k<<1|1,mid+1,r,op);
up(k);
}
int query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return (top[k]==1)*sum[k];
if (lazy[k]) Down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) return query(k<<1,l,r);
else if (l>mid) return query(k<<1|1,l,r);
else return query(k<<1,l,mid)+query(k<<1|1,mid+1,r);
}
void print(int k,int l,int r)
{
if (L[k]==R[k]) {cout<<top[k]<<' ';return;}
if (lazy[k]) Down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) print(k<<1,l,r);
else if (l>mid) print(k<<1|1,l,r);
else print(k<<1,l,mid),print(k<<1|1,mid+1,r);
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("f.in","r",stdin);
freopen("f.out","w",stdout);
#endif
n=read(),m=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
a[i][j]=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
near[a[i][j]][0]=a[i-1][j];
near[a[i][j]][1]=a[i+1][j];
near[a[i][j]][2]=a[i][j-1];
near[a[i][j]][3]=a[i][j+1];
}
build(1,1,n*m);
int l=1;
for (int i=1;i<=n*m;i++)
{
bool flag;
do
{
flag=0;int u[5],t=0;u[t++]=findroot(i);
for (int j=0;j<4;j++) if (near[i][j]) u[t++]=findroot(near[i][j]);
for (int x=0;x<t;x++)
for (int y=x+1;y<t;y++)
if (u[x]==u[y]) {flag=1;break;}
if (!flag) break;
for (int j=0;j<4;j++) if (near[l][j]>=l&&near[l][j]<i) cut(l,near[l][j]);
l++;
}while (1);
add(1,l,i,1);
for (int j=0;j<4;j++)
if (near[i][j]>=l&&near[i][j]<=i)
link(i,near[i][j]),add(1,l,near[i][j],-1);
ans+=query(1,l,i);
//print(1,l,i);cout<<endl;
//cout<<l<<' '<<i<<' '<<ans<<endl;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  

Codeforces Round #539 Div. 1的更多相关文章

  1. Codeforces Round #539 (Div. 2) - D. Sasha and One More Name(思维)

    Problem   Codeforces Round #539 (Div. 2) - D. Sasha and One More Name Time Limit: 1000 mSec Problem ...

  2. Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax(思维题)

    Problem   Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax Time Limit: 2000 mSec Problem ...

  3. Codeforces Round #539 (Div. 2)

    Codeforces Round #539 (Div. 2) A - Sasha and His Trip #include<bits/stdc++.h> #include<iost ...

  4. Codeforces Round #539 (Div. 2) 题解

    Codeforces Round #539 (Div. 2) 题目链接:https://codeforces.com/contest/1113 A. Sasha and His Trip 题意: n个 ...

  5. Codeforces Round #539 (Div. 2) D 思维

    https://codeforces.com/contest/1113/problem/D 题意 将一个回文串切成一段一段,重新拼接,组成一个新的回文串,问最少切几刀 题解 首先无论奇偶串,最多只会切 ...

  6. Codeforces Round #539 (Div. 2) 异或 + dp

    https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...

  7. Codeforces Round #539 (Div. 2) C. Sasha and a Bit of Relax(前缀异或和)

    转载自:https://blog.csdn.net/Charles_Zaqdt/article/details/87522917 题目链接:https://codeforces.com/contest ...

  8. Codeforces Round #539 (Div. 2) C Sasha and a Bit of Relax

    题中意思显而易见,即求满足al⊕al+1⊕…⊕amid=amid+1⊕amid+2⊕…⊕ar且l到r的区间长为偶数的这样的数对(l,r)的个数. 若al⊕al+1⊕…⊕amid=amid+1⊕amid ...

  9. 20191031 Codeforces Round #539 (Div. 1) - Virtual Participation

    这场怎么全是数据结构题...

随机推荐

  1. EntityFramework Core并发深挖详解,一纸长文,你准备好看完了吗?

    前言 之前有关EF并发探讨过几次,但是呢,博主感觉还是有问题,为什么会觉得有问题,其实就是理解不够透彻罢了,于是在项目中都是用的存储过程或者SQL语句来实现,利用放假时间好好补补EF Core并发的问 ...

  2. 重构JS代码 - 让JS代码平面化

    js中的嵌套函数用的很多,很牛叉,那为何要平面化? 易懂(自己及他人) 易修改(自己及他人) 平时Ajax调用写法(基于jQuery) $.post('url', jsonObj, function ...

  3. Jmeter实例(二)简单的性能测试场景

    我们在性能测试过程中,首先应该去设计测试场景,模拟真实业务发生的情境,然后针对这些场景去设计测试脚本.为了暴露出性能问题,要尽可能的去模拟被测对象可能存在瓶颈的测试场景. 我在本地部署了一个项目,可以 ...

  4. Django组件 之 ookie 和 session

    -----------------------------------------------------------------------------------------相信自己,水滴石穿,不 ...

  5. hybrid App cordova打包webapp PhoneGap

    Hybrid APP基础篇(一)->什么是Hybrid App APP三种开发模式--之--HybridApp解决方案 Hybrid App开发 四大主流平台分析 Hybrid App 开发模式 ...

  6. 安装pandas时出现环境错误

    在安装pandas时出现Could not install packages due to an EnvironmentErrorConsider using the `--user` option ...

  7. 多线程系列之九:Worker Thread模式

    一,Worker Thread模式 也叫ThreadPool(线程池模式) 二,示例程序 情景:一个工作车间有多个工人处理请求,客户可以向车间添加请求.请求类:Request定义了请求的信息和处理该请 ...

  8. Java Core - 序列化和反序列化

    把对象转换为字节序列的过程称为对象的序列化 把字节序列恢复成对象的过程称为对象的反序列化 一.对象的序列化的应用: 1.把对象的字节序列永久地保存到硬盘上,通常存放在一个文件中. 2.在网络上传送对象 ...

  9. 解决mysql1336

    1.mysql字符集与插入数据字符集不匹配 USE 数据库名称SHOW VARIABLES LIKE 'character%'SET character_set_server=utf8;SET cha ...

  10. 01-学习vue前的准备工作

    起步 1.扎实的HTML/CSS/Javascript基本功,这是前置条件. 2.不要用任何的构建项目工具,只用最简单的<script>,把教程里的例子模仿一遍,理解用法.不推荐上来就直接 ...