A:即求长度为偶数的异或和为0的区间个数,对前缀异或和用桶记录即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 300010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N],cnt[1<<20][2];
ll ans;
signed main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif
n=read();
for (int i=1;i<=n;i++) a[i]=a[i-1]^read();
cnt[0][0]=1;
for (int i=1;i<=n;i++)
{
ans=ans+cnt[a[i]][i&1];
cnt[a[i]][i&1]++;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  B:显然如果有解,答案一定不大于2,因为原串是回文串,找到第一个不是回文串的前缀和对其对应后缀切掉并交换即可。无解直接判断是否字母都相同或只有最中间字母不同。然后只需要check是否为1,暴力枚举切割点暴力判断即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 5010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n;
char s[N],a[N];
signed main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif
scanf("%s",s+1);n=strlen(s+1);
if (n==1) {cout<<"Impossible";return 0;}
bool flag=1;
for (int i=2;i<=n;i++) if (s[i]!=s[1]) {flag=0;break;}
if (flag) {cout<<"Impossible";return 0;}
if (n&1)
{
bool flag=1;
for (int i=2;i<=n;i++) if (s[i]!=s[1]&&i!=(n+1)/2) {flag=0;break;}
if (flag) {cout<<"Impossible";return 0;}
}
for (int i=1;i<n;i++)
{
for (int j=1;j<=n-i;j++) a[j]=s[j+i];
for (int j=n-i+1;j<=n;j++) a[j]=s[j-(n-i)];
bool flag=1;
for (int j=1;j<=n;j++) if (a[j]!=a[n-j+1]) {flag=0;break;}
if (!flag) continue;
for (int j=1;j<=n;j++) if (a[j]!=s[j]) {cout<<1;return 0;}
}
cout<<2;
return 0;
//NOTICE LONG LONG!!!!!
}

  D:显然枚举两点路径上有多少个点,选出这些点并排列,给路径上每条边插板分配权值,剩余边权值任意取。只剩下一个问题,就是如何计算固定这条路径后,树的形态个数。考虑将这条边缩点,一条边连接某两个点的方案数是1,而连接某个点和这条链的方案数则是其链长。将链长作为这个点的权值,其余点权值为1,于是我们要统计的东西相当于缩点后每棵树的所有点权值度数之积的和。注意到出现了度数,考虑prufer序列。序列中每个点出现次数=其度数-1,并且由于要统计所有树,每种对应的prufer序列都存在。这样由分配律可得方案数即为(i+1)*nn-2-i,其中i为路径上点的个数。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a,b,fac[N],inv[N],ans;
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#endif
n=read(),m=read();read(),read();
fac[0]=1;for (int i=1;i<=N-10;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=N-10;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=1;i<=N-10;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
for (int i=1;i<n;i++)
{
int x;if (i==n-1) x=1;else x=1ll*(i+1)*ksm(n,n-2-i)%P;
x=1ll*x*C(m-1,i-1)%P*C(n-2,i-1)%P*ksm(m,n-i-1)%P*fac[i-1]%P;
ans=(ans+x)%P;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  E:傻逼题,要是先开E而不是C说不定就码完了。对模数的质因子分别记录次数即可,线段树瞎维护。质因子的次幂可以预处理一下,略卡常。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,P,a[N],q,L[N<<2],R[N<<2],ans[N<<2],p[12],u[12][2][1000010],cnt;
ll lazy[N<<2][12];
int ksm(int a,ll k)
{
return 1ll*u[a][0][k%1000000]*u[a][1][k/1000000]%P;
}
void exgcd(int &x,int &y,int a,int b)
{
if (b==0)
{
x=1,y=0;
return;
}
exgcd(x,y,b,a%b);
int t=x;x=y;y=t-a/b*x;
}
int inv(int a)
{
int x,y;
exgcd(x,y,a,P);
return (x%P+P)%P;
}
void up(int k){ans[k]=(ans[k<<1]+ans[k<<1|1])%P;}
void update(int k)
{
ans[k]=lazy[k][0];
for (int i=1;i<=cnt;i++) ans[k]=1ll*ans[k]*ksm(i,lazy[k][i])%P;
}
void down(int k,int i)
{
lazy[k<<1][i]+=lazy[k][i],lazy[k<<1|1][i]+=lazy[k][i];
ans[k<<1]=1ll*ans[k<<1]*ksm(i,lazy[k][i])%P,ans[k<<1|1]=1ll*ans[k<<1|1]*ksm(i,lazy[k][i])%P;
lazy[k][i]=0;
}
void down(int k)
{
lazy[k<<1][0]=1ll*lazy[k<<1][0]*lazy[k][0]%P;
lazy[k<<1|1][0]=1ll*lazy[k<<1|1][0]*lazy[k][0]%P;
ans[k<<1]=1ll*ans[k<<1]*lazy[k][0]%P;
ans[k<<1|1]=1ll*ans[k<<1|1]*lazy[k][0]%P;
lazy[k][0]=1;
for (int i=1;i<=cnt;i++)
down(k,i);
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;lazy[k][0]=1;
if (l==r)
{
ans[k]=lazy[k][0]=a[l];ans[k]%=P;
for (int i=1;i<=cnt;i++)
while (lazy[k][0]%p[i]==0)
lazy[k][0]/=p[i],lazy[k][i]++;
return;
}
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
up(k);
}
void add(int k,int l,int r,int i,int x,int u)
{
if (L[k]==l&&R[k]==r) {ans[k]=1ll*ans[k]*u%P;lazy[k][i]+=x;return;}
down(k,i);
int mid=L[k]+R[k]>>1;
if (r<=mid) add(k<<1,l,r,i,x,u);
else if (l>mid) add(k<<1|1,l,r,i,x,u);
else add(k<<1,l,mid,i,x,u),add(k<<1|1,mid+1,r,i,x,u);
up(k);
}
void mul(int k,int l,int r,int x)
{
if (L[k]==l&&R[k]==r) {ans[k]=1ll*ans[k]*x%P;lazy[k][0]=1ll*lazy[k][0]*x%P;return;}
down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) mul(k<<1,l,r,x);
else if (l>mid) mul(k<<1|1,l,r,x);
else mul(k<<1,l,mid,x),mul(k<<1|1,mid+1,r,x);
up(k);
}
void add(int k,int p,int i,int x)
{
if (L[k]==R[k]) {lazy[k][i]+=x;update(k);return;}
down(k,i);
int mid=L[k]+R[k]>>1;
if (p<=mid) add(k<<1,p,i,x);else add(k<<1|1,p,i,x);
up(k);
}
void mul(int k,int p,int x)
{
if (L[k]==R[k]) {lazy[k][0]=1ll*lazy[k][0]*x%P;update(k);return;}
down(k);
int mid=L[k]+R[k]>>1;
if (p<=mid) mul(k<<1,p,x);else mul(k<<1|1,p,x);
up(k);
}
int query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return ans[k];
down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) return query(k<<1,l,r);
else if (l>mid) return query(k<<1|1,l,r);
else return (query(k<<1,l,mid)+query(k<<1|1,mid+1,r))%P;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
const char LL[]="%I64d\n";
#endif
n=read(),P=read();
int v=P;
for (int i=2;i*i<=v;i++)
if (v%i==0)
{
p[++cnt]=i;
while (v%i==0) v/=i;
}
if (v>1) p[++cnt]=v;
for (int i=1;i<=cnt;i++)
{
u[i][0][0]=1;
for (int j=1;j<=1000000;j++) u[i][0][j]=1ll*u[i][0][j-1]*p[i]%P;
u[i][1][0]=1;
for (int j=1;j<=1000000;j++) u[i][1][j]=1ll*u[i][1][j-1]*u[i][0][1000000]%P;
}
for (int i=1;i<=n;i++) a[i]=read();
build(1,1,n);
q=read();
while (q--)
{
int op=read();
if (op==1)
{
int l=read(),r=read(),x=read();
for (int i=1;i<=cnt;i++)
{
int t=0;
while (x%p[i]==0) t++,x/=p[i];
if (t) add(1,l,r,i,t,ksm(i,t));
}
mul(1,l,r,x);
}
if (op==2)
{
int u=read(),x=read();
for (int i=1;i<=cnt;i++)
{
int t=0;
while (x%p[i]==0) t++,x/=p[i];
if (t) add(1,u,i,-t);
}
mul(1,u,inv(x));
}
if (op==3)
{
int l=read(),r=read();
printf("%d\n",query(1,l,r));
}
}
return 0;
//NOTICE LONG LONG!!!!!
}

  C实在不想补。

  result:rank 37 rating +142

  F:先考虑一维情况怎么做。一些点在序列上连续相当于点数-边数(即相邻两点同时被选)=1,考虑在值域上不断移动右端点,用线段树维护每个后缀区间的点数-边数的值。由于每次只是对每个区间都增加该右端点,考虑该点对每个区间的影响,显然根据其相邻两数将值域分成几段,分别用线段树区间加即可。因为点数-边数>=1,维护区间最小值及个数即可统计答案。

  拓展到二维,考虑使用同样的做法,但需要保证选出的点构成树。一个自然的想法是由于已经要求点数-边数=1,只要让选出的点构成连通块即可,但这个东西没有任何单调性。事实上注意到只要不形成环,加上点数-边数=1,也可以保证这是一棵树,而这个东西则是单调的。使用双指针,枚举右端点,找到最靠前的满足不构成环的左端点即可,可以LCT实现带删边并查集。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
#define lself tree[tree[k].fa].ch[0]
#define rself tree[tree[k].fa].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[1010][1010],near[N][4];
ll ans;
struct data{int ch[2],fa,rev;
}tree[N];
void rev(int k){if (k) swap(lson,rson),tree[k].rev^=1;}
void down(int k){if (tree[k].rev) rev(lson),rev(rson),tree[k].rev=0;}
int whichson(int k){return rself==k;}
bool isroot(int k){return lself!=k&&rself!=k;}
void push(int k){if (!isroot(k)) push(tree[k].fa);down(k);}
void move(int k)
{
int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k);
if (!isroot(fa)) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf;
tree[fa].ch[p]=tree[k].ch[!p],tree[tree[k].ch[!p]].fa=fa;
tree[k].ch[!p]=fa,tree[fa].fa=k;
}
void splay(int k)
{
push(k);
while (!isroot(k))
{
int fa=tree[k].fa;
if (!isroot(fa))
if (whichson(fa)^whichson(k)) move(k);
else move(fa);
move(k);
}
}
void access(int k){for (int t=0;k;t=k,k=tree[k].fa) splay(k),tree[k].ch[1]=t;}
int findroot(int k){if (!k) return 0;access(k);splay(k);for (;lson;k=lson) down(k);splay(k);return k;}
void makeroot(int k){access(k),splay(k),rev(k);}
void link(int x,int y){makeroot(x);tree[x].fa=y;}
void cut(int x,int y){makeroot(x),access(y),splay(y);tree[y].ch[0]=tree[x].fa=0;}
int L[N<<2],R[N<<2],sum[N<<2],top[N<<2],lazy[N<<2];
void up(int k)
{
if (top[k<<1]==top[k<<1|1])
{
top[k]=top[k<<1];
sum[k]=sum[k<<1]+sum[k<<1|1];
}
else if (top[k<<1]<top[k<<1|1]) top[k]=top[k<<1],sum[k]=sum[k<<1];
else top[k]=top[k<<1|1],sum[k]=sum[k<<1|1];
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) {sum[k]=1;return;}
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
up(k);
}
void Down(int k)
{
top[k<<1]+=lazy[k],top[k<<1|1]+=lazy[k];
lazy[k<<1]+=lazy[k],lazy[k<<1|1]+=lazy[k];
lazy[k]=0;
}
void add(int k,int l,int r,int op)
{
if (L[k]==l&&R[k]==r) {lazy[k]+=op;top[k]+=op;return;}
if (lazy[k]) Down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) add(k<<1,l,r,op);
else if (l>mid) add(k<<1|1,l,r,op);
else add(k<<1,l,mid,op),add(k<<1|1,mid+1,r,op);
up(k);
}
int query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return (top[k]==1)*sum[k];
if (lazy[k]) Down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) return query(k<<1,l,r);
else if (l>mid) return query(k<<1|1,l,r);
else return query(k<<1,l,mid)+query(k<<1|1,mid+1,r);
}
void print(int k,int l,int r)
{
if (L[k]==R[k]) {cout<<top[k]<<' ';return;}
if (lazy[k]) Down(k);
int mid=L[k]+R[k]>>1;
if (r<=mid) print(k<<1,l,r);
else if (l>mid) print(k<<1|1,l,r);
else print(k<<1,l,mid),print(k<<1|1,mid+1,r);
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("f.in","r",stdin);
freopen("f.out","w",stdout);
#endif
n=read(),m=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
a[i][j]=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
near[a[i][j]][0]=a[i-1][j];
near[a[i][j]][1]=a[i+1][j];
near[a[i][j]][2]=a[i][j-1];
near[a[i][j]][3]=a[i][j+1];
}
build(1,1,n*m);
int l=1;
for (int i=1;i<=n*m;i++)
{
bool flag;
do
{
flag=0;int u[5],t=0;u[t++]=findroot(i);
for (int j=0;j<4;j++) if (near[i][j]) u[t++]=findroot(near[i][j]);
for (int x=0;x<t;x++)
for (int y=x+1;y<t;y++)
if (u[x]==u[y]) {flag=1;break;}
if (!flag) break;
for (int j=0;j<4;j++) if (near[l][j]>=l&&near[l][j]<i) cut(l,near[l][j]);
l++;
}while (1);
add(1,l,i,1);
for (int j=0;j<4;j++)
if (near[i][j]>=l&&near[i][j]<=i)
link(i,near[i][j]),add(1,l,near[i][j],-1);
ans+=query(1,l,i);
//print(1,l,i);cout<<endl;
//cout<<l<<' '<<i<<' '<<ans<<endl;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  

Codeforces Round #539 Div. 1的更多相关文章

  1. Codeforces Round #539 (Div. 2) - D. Sasha and One More Name(思维)

    Problem   Codeforces Round #539 (Div. 2) - D. Sasha and One More Name Time Limit: 1000 mSec Problem ...

  2. Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax(思维题)

    Problem   Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax Time Limit: 2000 mSec Problem ...

  3. Codeforces Round #539 (Div. 2)

    Codeforces Round #539 (Div. 2) A - Sasha and His Trip #include<bits/stdc++.h> #include<iost ...

  4. Codeforces Round #539 (Div. 2) 题解

    Codeforces Round #539 (Div. 2) 题目链接:https://codeforces.com/contest/1113 A. Sasha and His Trip 题意: n个 ...

  5. Codeforces Round #539 (Div. 2) D 思维

    https://codeforces.com/contest/1113/problem/D 题意 将一个回文串切成一段一段,重新拼接,组成一个新的回文串,问最少切几刀 题解 首先无论奇偶串,最多只会切 ...

  6. Codeforces Round #539 (Div. 2) 异或 + dp

    https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...

  7. Codeforces Round #539 (Div. 2) C. Sasha and a Bit of Relax(前缀异或和)

    转载自:https://blog.csdn.net/Charles_Zaqdt/article/details/87522917 题目链接:https://codeforces.com/contest ...

  8. Codeforces Round #539 (Div. 2) C Sasha and a Bit of Relax

    题中意思显而易见,即求满足al⊕al+1⊕…⊕amid=amid+1⊕amid+2⊕…⊕ar且l到r的区间长为偶数的这样的数对(l,r)的个数. 若al⊕al+1⊕…⊕amid=amid+1⊕amid ...

  9. 20191031 Codeforces Round #539 (Div. 1) - Virtual Participation

    这场怎么全是数据结构题...

随机推荐

  1. vim 正则非贪婪模式

    比如多匹配使用 .* 效果自然是贪婪模式,JS 的非贪婪很简单,是 .*? 即可,而 vim 不同,语法是 .\{-},注意 \ 转义.

  2. gohost -- go 开发的命令行hosts配置管理工具

    前几天在微博上看到有人推荐了lazygit这个工具,让人眼前一亮,什么时候命令行也可以这么抢到了,

  3. 朱晔的互联网架构实践心得S1E9:架构评审一百问和设计文档五要素

    朱晔的互联网架构实践心得S1E9:架构评审一百问和设计文档五要素 [下载文本PDF进行阅读] 本文我会来说说我认为架构评审中应该看的一些点,以及我写设计文档的一些心得.助你在架构评审中过五关斩六将,助 ...

  4. flask 单元测试

    程序开发过程中,代码是为了完成需求,当代码编译通过后,能不能保证功能的正常实现,需要我们编写测试代码,模拟程序运行过程,检验功能是否符合预期. 单元测试主要面向一些功能单一的模块进行. 单元测试,实际 ...

  5. H5 32-百度首页

    32-百度首页 新 闻 网 页 贴 吧 知 道 音 乐 图 片 视 频 地 图 百科 文库 hao123 | 更多>> 百度地图带你吃喝玩乐,全心全意为人民服务 把百度设为主页 安装百度卫 ...

  6. H5 文字属性的缩写

    05-文字属性的缩写 abc我是段落 <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  7. java 浅克隆 深克隆

    对象的克隆是java的一项高级技术,他可以根据给定的对象,获得与其完全相同的另一个对象. 1.浅克隆主要是复制对象的值 2.深克隆:当类存在聚合关系的时候,克隆就必须考虑聚合对象的克隆,可以复制引用类 ...

  8. Mysql数据库触发器调用脚本

    一.数据库触发器 mysql触发器trigger 实例详解 对数据库触发器new和old的理解 示例 二.UDF mySql的UDF是什么 三.安装执行命令UDF mysql触发器调用外部脚本(安装) ...

  9. Apache Tomcat® - Which Version Do I Want?

    Apache Tomcat® - Which Version Do I Want?http://tomcat.apache.org/whichversion.html

  10. react插件包

    react-scoped-style support ie8,ie8+,chrome,firefox,safari does not support css priority (just apply ...