要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。

Input数据的第一行是一个T,表示有T组数据。 
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。Output对应每组数据输出(A/B)%9973。Sample Input

2
1000 53
87 123456789

Sample Output

7922
6060 解析:
  A = 9973 * y + n
  A = x * B
  所以 x * B - y * 9973 = n
  带入exgcd时y的正负不影响 反正又不用y
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main()
{
int T;
cin >> T;
while(T--)
{
LL n, a, b;
LL x, y, d;
cin >> n >> a;
b = ;
exgcd(a, b, d, x, y);
b /= d;
x *= n / d;
x = (x % b + b) % b;
cout << x << endl;
}
return ;
}
												

A/B HDU - 1576 (exgcd)的更多相关文章

  1. A * B Problem Plus HDU - 1402 (FFT)

    A * B Problem Plus HDU - 1402 (FFT) Calculate A * B.  InputEach line will contain two integers A and ...

  2. D - 淡黄的长裙 HDU - 4221(贪心)

    D - 淡黄的长裙 HDU - 4221(贪心) James is almost mad! Currently, he was assigned a lot of works to do, so ma ...

  3. 扩展欧几里得算法(EXGCD)学习笔记

    0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...

  4. hdu 5055(坑)

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=5055 Bob and math problem Time Limit: 2000/1000 MS ( ...

  5. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  6. hdu 5391 (数论)

    Zball in Tina Town Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Oth ...

  7. hdu 5534(dp)

    Input The first line contains an integer T indicating the total number of test cases. Each test case ...

  8. A - Dogs and Cages HDU - 6243(组合数学)

    题意:在1—n的数字,放入编号为1—n的框中,每个框只放一个数字,问数字与所放的框的编号不同的个数的期望值. 思路:在1—n中任选一个数字,设为k 那么 k 排到非k编号的框中的方案数为 n!-(n- ...

  9. HDU 4545 (模拟) 魔法串

    题目链接 Problem Description 小明和他的好朋友小西在玩一个新的游戏,由小西给出一个由小写字母构成的字符串,小明给出另一个比小西更长的字符串,也由小写字母组成,如果能通过魔法转换使小 ...

随机推荐

  1. JAVA验证身份证格式及合法性

    旅游电子商务中,预订酒店或订购门票时会以身份证作为消费凭证,为了防止客户误填身份证带来不必要麻烦,需要验证码格式及合法性,代码如下: /** * 判断身份证格式 * * @param idNum * ...

  2. Python之Flask笔记

    在这里先说一下最开始所经历的一些错误app=Flask(_name_),当初拼写的时候怎么都报错后来发现此处是两个'_' 配置文件 app.config.from_object(__name__) 在 ...

  3. Kickstart Practice Round 2017---A

    Problem The Constitution of a certain country states that the leader is the person with the name con ...

  4. Python学习第九篇——while和for的区别

    pets = ['dog','cat','dog','goldfish','cat','rabbit','cat'] print(pets) for pet in pets: print(pet) # ...

  5. hibernate设置二级缓存时报错java.lang.NoClassDefFoundError: org/hibernate/engine/jndi/JndiNameException

    错误提示大概意思是,没有类定义错误,就是找不到要使用的hibernate二级缓存管理引擎类.我在这用的是ehcache二级轻量级缓存,报错原因可能是导入的jar包版本和使用的hibernate框架核心 ...

  6. react 路由 react-router-dom

    import React from 'react'; import DataList from './data' import Tr from './Tr' // import One from '. ...

  7. [转帖]ODBC、OLEDB、ADO、ADO.NET

    一文详解ODBC.OLEDB.ADO.ADO.NET之间的关系 2019年01月16日 21:28:38 LoveMIss-Y 阅读数:66更多 所属专栏: 白话C#高级编程   版权声明:本文为博主 ...

  8. [转帖]Windows DHCPServer远程代码执行漏洞分析(CVE-2019-0626)

    Windows DHCPServer远程代码执行漏洞分析(CVE-2019-0626) ADLab2019-03-15共23605人围观 ,发现 4 个不明物体安全报告漏洞 https://www.f ...

  9. 微信小程序错误码参考大全

    开发过程中,会遇到很多微信返回的状态码,鬼知道代表什么意思,现在好了,整理总结了一份状态码,方便大家. 转载:http://www.yiyongtong.com/archives/view-1856- ...

  10. Python rsa公私钥生成 rsa公钥加解密(分段加解密)-私钥加签验签实战

    一般现在的SAAS服务提供现在的sdk或api对接服务都涉及到一个身份验证和数据加密的问题.一般现在普遍的做法就是配置使用非对称加密的方式来解决这个问题,你持有SAAS公司的公钥,SAAS公司持有你的 ...