hive复杂类型实战
1、hive 数组简单实践:
CREATE TABLE `emp`(
`name` string,
`emps` array<string>)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://node:9000/user/hive/warehouse/daxin.db/emp' 存入数据,借助insert into ... select : insert into emp select "daxin",array('zhangsan','lisi','wangwu') from ptab; hive> select * from emp;
OK
daxin ["zhangsan","lisi","wangwu"]
mali ["jack","lixisan","fala"]
Time taken: 0.045 seconds, Fetched: 2 row(s)
hive>
>
> select * from emp LATERAL VIEW explode(emps) tmp ;
OK
daxin ["zhangsan","lisi","wangwu"] zhangsan
daxin ["zhangsan","lisi","wangwu"] lisi
daxin ["zhangsan","lisi","wangwu"] wangwu
mali ["jack","lixisan","fala"] jack
mali ["jack","lixisan","fala"] lixisan
mali ["jack","lixisan","fala"] fala
Time taken: 0.047 seconds, Fetched: 6 row(s)
hive> select * from emp LATERAL VIEW explode(emps) tmp as empeeName ;
OK
daxin ["zhangsan","lisi","wangwu"] zhangsan
daxin ["zhangsan","lisi","wangwu"] lisi
daxin ["zhangsan","lisi","wangwu"] wangwu
mali ["jack","lixisan","fala"] jack
mali ["jack","lixisan","fala"] lixisan
mali ["jack","lixisan","fala"] fala
Time taken: 0.038 seconds, Fetched: 6 row(s)
hive>
> set hive.cli.print.header=true;
hive> select * from emp LATERAL VIEW explode(emps) tmp as empeeName ;
OK
emp.name emp.emps tmp.empeename
daxin ["zhangsan","lisi","wangwu"] zhangsan
daxin ["zhangsan","lisi","wangwu"] lisi
daxin ["zhangsan","lisi","wangwu"] wangwu
mali ["jack","lixisan","fala"] jack
mali ["jack","lixisan","fala"] lixisan
mali ["jack","lixisan","fala"] fala
Time taken: 0.046 seconds, Fetched: 6 row(s)
LATERAL VIEW explode(emps) tmp as empeeName 其中as后面的名字指定被拆分数组的字段名字为empeeName;
2、Hive复杂数据类型之Map
创建表语句:
CREATE TABLE `userinfo`(
`name` string,
`info` map<string,string>)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://node:9000/user/hive/warehouse/daxin.db/userinfo' 插入数据:
insert into userinfo select "daxin",map("addr","liaoning") from ptab limit ;
插入数据时候注意,map的key与value之间使用逗号分隔,而不是使用冒号!!!
hive> select * from userinfo;
OK
userinfo.name userinfo.info
daxin {"addr":"liaoning"}
Time taken: 0.04 seconds, Fetched: 1 row(s)
带有where条件查询:
hive> select * from userinfo where info['addr']="liaoning";
OK
userinfo.name userinfo.info
daxin {"addr":"liaoning"}
Time taken: 0.041 seconds, Fetched: 1 row(s)
hive> insert into userinfo select "zhansan",map("addr","beijing","sex","boy","word","coder") from ptab limit 1;
Query ID = liuguangxin_20181102201144_b74fcc0e-1c2d-49e6-9268-bdc97e79ba86
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1541155477807_0005, Tracking URL = http://10.12.141.138:8099/proxy/application_1541155477807_0005/
Kill Command = /Users/liuguangxin/bigdata/hadoop/bin/hadoop job -kill job_1541155477807_0005
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-11-02 20:11:50,234 Stage-1 map = 0%, reduce = 0%
2018-11-02 20:11:55,370 Stage-1 map = 100%, reduce = 0%
2018-11-02 20:11:59,478 Stage-1 map = 100%, reduce = 100%
Ended Job = job_1541155477807_0005
Loading data to table daxin.userinfo
Table daxin.userinfo stats: [numFiles=2, numRows=2, totalSize=60, rawDataSize=58]
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 HDFS Read: 9552 HDFS Write: 110 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
_c0 _c1
Time taken: 15.827 seconds
hive> select * from userinfo where info['addr1']="liaoning"; //当map中不存在key时候不会报错,只会查询不到数据
OK
userinfo.name userinfo.info
Time taken: 0.04 seconds
查看信息个数:
hive > select size(info) as infoCount,* from userinfo ;
OK
infocount userinfo.name userinfo.info
1 daxin {"addr":"liaoning"}
3 zhansan {"addr":"beijing","sex":"boy","word":"coder"}
Time taken: 0.045 seconds, Fetched: 2 row(s)
3、hive复杂数据类型Map
CREATE TABLE `fixuserinfo`(
`name` string,
`info` struct<addr:string,mail:string,sex:string>)
COMMENT 'the count of info is fixed'
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://node:9000/user/hive/warehouse/daxin.db/fixuserinfo'
插入数据:
参考一下:https://blog.csdn.net/xiaolang85/article/details/51330634
创建数据表
CREATE TABLE test(id int,course struct<course:string,score:int>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
数据
1 english,80
2 math,89
3 chinese,95
入库
LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;
查询
hive> select * from test;
OK
1 {"course":"english","score":80}
2 {"course":"math","score":89}
3 {"course":"chinese","score":95}
Time taken: 0.275 seconds
hive> select course from test;
{"course":"english","score":80}
{"course":"math","score":89}
{"course":"chinese","score":95}
Time taken: 44.968 seconds
select t.course.course from test t;
english
math
chinese
Time taken: 15.827 seconds
hive> select t.course.score from test t;
80
89
95
Time taken: 13.235 seconds
4、数组查询数据的 : LATERAL VIEW explode(emps) tmp as empeeName使用:
对某一个字段进行展开,并将该字段指定一个名字,对于一个 表有多个array类型的表而言,每一条记录展开之后产生的记录数是该行记录的展开数组个数相乘,例如:
CREATE TABLE `empinfo`(
`name` string,
`emps` array<string>,
`sal` array<string>);
表中的数据:
empinfo.name empinfo.emps empinfo.sal
daxin ["zhangsan","lisi","wangwu"] ["99999","88888","999999"]
mali ["11","22","33"] ["6666","7777","8888"]
查询语句:
按照emps与sal进行展开,对与第一行数据的每一个数组都是3个元素,因此展开之后变成9条数据!第二行同理,所以共计18行记录!!!
5、Hive在线查看函数文档
参考官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
参考:https://blog.csdn.net/wangtao6791842/article/details/37966035
hive复杂类型实战的更多相关文章
- Scala 深入浅出实战经典 第54讲:Scala中复合类型实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第53讲:Scala中结构类型实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Hive 表类型简述
Hive 表类型简述 表类型一.管理表或内部表Table Type: MANAGED_TABLE example: create table Inner(id int,name string, ...
- hive 复杂类型
hive提供一种复合类型的数据 struct:可以使用"."来存取数据 map:可以使用键值对来存取数据 array:array中存取的数据为相同类型,其中的数据可以通过下表获取数 ...
- 第54讲:Scala中复合类型实战详解
今天学习了scala的复合类型的内容,让我们通过实战来看看代码: trait Compound_Type1trait Compound_Type2class Compound_Type extends ...
- sqoop mysql导入hive 数值类型变成null的问题分析
问题描述:mysql通过sqoop导入到hive表中,发现有个别数据类型为int或tinyint的列导入后数据为null.设置各种行分隔符,列分隔符都没有效果. 问题分析:hive中单独将有问题的那几 ...
- 解决hue/hiveserver2对于hive date类型显示为NULL的问题
用户报在Hue中执行一条sql:select admission_date, discharge_date,birth_date from hm_004_20170309141149.inpatien ...
- Hive调优实战[转]
Hive优化总结 [转自:http://sznmail.iteye.com/blog/1499789] 优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoo ...
- 转载:几种 hive join 类型简介
作为数据分析中经常进行的join 操作,传统DBMS 数据库已经将各种算法优化到了极致,而对于hadoop 使用的mapreduce 所进行的join 操作,去年开始也是有各种不同的算法论文出现,讨论 ...
随机推荐
- JavaScript是如何工作的:事件循环和异步编程的崛起 + 5种使用 async/await 更好地编码方式!
摘要: 深度理解JS事件循环!!! 原文:JavaScript是如何工作的:事件循环和异步编程的崛起+ 5种使用 async/await 更好地编码方式! 作者:前端小智 Fundebug经授权转载, ...
- idea代码提示,不区分大小写
idea代码提示,不区分大小写:File-->Settings-->Editor-->General-->Code Completion-->Case sensitive ...
- jQuery 练习:取出数组字典的值, 静态对话框, clone方法应用
jQuery 中文API文档 http://jquery.cuishifeng.cn/ jQuery 取出数组字典的值 <head> <meta charset="UTF- ...
- js替换字符中的斜杠反斜杠
var reg=/\\|\//g; var a="a\a\\a/b" alert(a.replace(reg,"-"));
- https遇到自签名证书/信任证书
对于CA机构颁发的证书Okhttp默认支持 可以直接访问 但是对于自定义的证书就不可以了(如:https ://kyfw.12306.cn/otn/), 需要加入Trust 下面分两部分来写,一是信任 ...
- git 入门教程之实战 git
实战 git git 是一款分布式版本控制系统,可以简单概括: 不要把鸡蛋放在一个篮子里,你的一举一动都在监视中. 实战场景 你作为某项目的其中一员或者负责人,和小伙伴们一起开发,大家既有着各自分工互 ...
- DOM对象和window对象
本文内容: DOM对象 Window 对象 首发日期:2018-05-11 DOM对象: DOM对象主要指代网页内的标签[包括整个网页] 比如:document代表整个 HTML 文档,用来访问页面中 ...
- SparkSQL【1.x版本】字段敏感不敏感问题
一.特征 1.SqlContext默认大小写不敏感,如果DataFrame中有字段相同,大小写不同,在使用字段的时候不会引起歧义. 2.HiveContext提供更多的Hive预置函数,可以更高效的进 ...
- java----JSTL学习笔记(转)
Java容器类包含List.ArrayList.Vector及map.HashTable.HashMap.Hashset ArrayList和HashMap是异步的,Vector和HashTable是 ...
- mssql sqlserver 验证整型函数分享
转自:http://www.maomao365.com/?p=6227 摘要: 下文将制作一个isnumber验证整型的函数,供在sql脚本中做数值判断,如下所示: 例: 实现原理:判断 是否包含特殊 ...