题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x。

n,m,V <= 100000

解:

毒瘤bitset......

假如我们有询问区间的一个桶,那么我们就可以做到O(n)枚举查找了。

然后我们用bitset优化一下......外面套上莫队来维护桶。

具体来说,差为x可以写成 a - b = x

然后我们把bitset左移/右移x位,与原来的and一下,看是否有元素为1即可。

和为x可以写成 a + b = x   N - a - b = N - x   (N - a) - b = N - x

这启示我们维护一个N - x的反桶,然后把反桶右移N - x位与原桶and。

关于积,直接n0.5暴力即可。

 #include <cstdio>
#include <bitset>
#include <cmath>
#include <algorithm> const int N = ; int fr[N], a[N], bin[N];
std::bitset<N> bs, bs2, tp; struct ASK {
int f, l, r, x, t, ans;
inline bool operator <(const ASK &w) const {
if(fr[l] != fr[w.l]) {
return l < w.l;
}
return r < w.r;
}
}ask[N]; inline bool cmp(const ASK &A, const ASK &B) {
return A.t < B.t;
} inline void add(int x) {
if(!bin[a[x]]) {
bs.set(a[x]);
bs2.set(N - a[x]);
}
bin[a[x]]++;
return;
} inline void del(int x) {
bin[a[x]]--;
if(!bin[a[x]]) {
bs.reset(a[x]);
bs2.reset(N - a[x]);
}
return;
} int main() {
int n, m;
scanf("%d%d", &n, &m);
int T = sqrt(n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
fr[i] = (i - ) / T + ;
}
for(int i = ; i <= m; i++) {
scanf("%d%d%d%d", &ask[i].f, &ask[i].l, &ask[i].r, &ask[i].x);
ask[i].t = i;
}
std::sort(ask + , ask + m + ); int l = , r = ;
bin[a[]]++;
bs.set(a[]);
bs2.set(N - a[]);
for(int i = ; i <= m; i++) {
while(l > ask[i].l) {
add(--l);
}
while(r < ask[i].r) {
add(++r);
}
while(l < ask[i].l) {
del(l++);
}
while(r > ask[i].r) {
del(r--);
}
// ------------
if(ask[i].f == ) {
tp = bs & (bs >> ask[i].x);
ask[i].ans = tp.any();
}
else if(ask[i].f == ) {
tp = bs & (bs2 >> (N - ask[i].x));
ask[i].ans = tp.any();
}
else {
bool fd = ;
for(int j = ; j * j <= ask[i].x; j++) {
if(ask[i].x % j) {
continue;
}
if(bs[j] && bs[ask[i].x / j]) {
ask[i].ans = ;
break;
}
}
}
} std::sort(ask + , ask + m + , cmp);
for(int i = ; i <= m; i++) {
if(ask[i].ans) {
puts("hana");
}
else {
puts("bi");
}
}
return ;
}

AC代码

洛谷P3674 小清新人渣的本愿的更多相关文章

  1. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  2. 洛谷P3674 小清新人渣的本愿(莫队)

    传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...

  3. 洛谷 P3674 小清新人渣的本愿

    想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...

  4. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  5. 【题解】Luogu P3674 小清新人渣的本愿

    原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...

  6. luogu P3674 小清新人渣的本愿

    传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...

  7. luogu P3674 小清新人渣的本愿(莫队+bitset)

    这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...

  8. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

  9. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

随机推荐

  1. day 7-21 pymysql模块

    一.安装的两种方法 第一种: #安装 pip3 install pymysql 第二种: 二.链接,执行sql,关闭(游标) import pymysql user = input("use ...

  2. java 从键盘录入的三种方法

    详细内容连接 https://blog.csdn.net/StriverLi/article/details/52984066

  3. idea中 maven打包时时报错User setting file does not exist C:\Users\lenevo\.m2\setting.xml,

    第一种错误 :idea中 maven打包时时报错User setting file does not exist C:\Users\lenevo\.m2\setting.xml, 解决方案如下:将ma ...

  4. python爬虫之线程池和进程池

    一.需求 最近准备爬取某电商网站的数据,先不考虑代理.分布式,先说效率问题(当然你要是请求的太快就会被封掉,亲测,400个请求过去,服务器直接拒绝连接,心碎),步入正题.一般情况下小白的我们第一个想到 ...

  5. 如何使用 Yum Repository 安装指定版本的 MySQL

    自从从使用 debian 系的 apt-get 转到使用 yum 工具之后一直不是很习惯,也没有去看过很多工具包安装的时候到底影响到了哪些文件等.这次借这次社区版 MySQL 安装来一并梳理一下. 首 ...

  6. MySQL中KEY、PRIMARY KEY、UNIQUE KEY、INDEX 的区别

    参考:MySQL中KEY.PRIMARY KEY.UNIQUE KEY.INDEX 的区别 对于题目中提出的问题,可以拆分来一步步解决.在 MySQL 中 KEY 和 INDEX 是同义.那这个问题就 ...

  7. Map接口----Map中嵌套Map

    package cn.good.com; import java.util.HashMap; import java.util.Iterator; import java.util.Map; impo ...

  8. 中断MSI INTA

    转载https://blog.csdn.net/huangkangying/article/details/11178425 MSI VS INTx(Pin-based interrupt) MSI的 ...

  9. Build 2017 Revisited: .NET, XAML, Visual Studio

    For the next couple months we're going to revisit Build 2017, each post focusing on different aspect ...

  10. c++中结构体sort()排序

    //添加函数头 #include <algorithm> //定义结构体Yoy typedef struct { double totalprice;         //总价 doubl ...