faster rcnn 做识别
faster rcnn 主要分为四个部分:
1. convolutional part: 特征提取 可以使用vgg,resnet 等等
2.region proposal network: 生成 region proposals,通过softmax 判断anchors属于background 或者目标。再通过bounding box
regression修正anchors的位置。
3. RoI pooling: 该层得到proposals的feature maps。作为全连接层的输入来判定目标
4. classification:对feature maps 进行分类。通过bounding box regression 得到精确位置。
region proposal network:
传统算法中使用滑动窗口或selective search的方法 太复杂
Faster rcnn 中RPN是由网络自己生成。
rois的shape 为(num_rois,5),4维定位, ·1维表示是哪副图
rois 的输入为(N, W/16, H/16, channels) N为batch的大小,图像原始大小为(W,H),经过vgg的4
层下采样层除以16.
void Compute(OpKernelContext* context) override
{
// Grab the input tensor
//input 中包含两个的tensor,为feature map 和 得到rois
const Tensor& bottom_data = context->input(0);
const Tensor& bottom_rois = context->input(1);
auto bottom_data_flat = bottom_data.flat<T>();
auto bottom_rois_flat = bottom_rois.flat<T>(); // data should have 4 dimensions. batch,width,height,channels
OP_REQUIRES(context, bottom_data.dims() == 4,
errors::InvalidArgument("data must be 4-dimensional")); // rois should have 2 dimensions. num_rois, 4
OP_REQUIRES(context, bottom_rois.dims() == 2,
errors::InvalidArgument("rois must be 2-dimensional")); // Number of ROIs
int num_rois = bottom_rois.dim_size(0);
// batch size
int batch_size = bottom_data.dim_size(0);
// data height
int data_height = bottom_data.dim_size(1);
// data width
int data_width = bottom_data.dim_size(2);
// Number of channels
int num_channels = bottom_data.dim_size(3); // construct the output shape, 输出为 4维,rois 的个数,rois 的尺度,在context 中传入的,channels
int dims[4];
dims[0] = num_rois;
dims[1] = pooled_height_;
dims[2] = pooled_width_;
dims[3] = num_channels;
TensorShape output_shape;
TensorShapeUtils::MakeShape(dims, 4, &output_shape); // Create output tensors
Tensor* output_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor));
auto output = output_tensor->template flat<T>(); Tensor* argmax_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(1, output_shape, &argmax_tensor));
auto argmax = argmax_tensor->template flat<int>(); int pooled_height = pooled_height_;
int pooled_width = pooled_width_;
# rois 的空间变换尺度
float spatial_scale = spatial_scale_; auto shard = [pooled_height, pooled_width, spatial_scale,
num_rois, batch_size, data_height, data_width, num_channels,
&bottom_data_flat, &bottom_rois_flat, &output, &argmax]
(int64 start, int64 limit) {
for (int64 b = start; b < limit; ++b)
{
// (n, ph, pw, c) is an element in the pooled output
int n = b;
int c = n % num_channels;
n /= num_channels;
int pw = n % pooled_width;
n /= pooled_width;
int ph = n % pooled_height;
n /= pooled_height;
//对rois 进行空间尺度上的变换
const float* bottom_rois = bottom_rois_flat.data() + n * 5;
int roi_batch_ind = bottom_rois[0];
int roi_start_w = round(bottom_rois[1] * spatial_scale);
int roi_start_h = round(bottom_rois[2] * spatial_scale);
int roi_end_w = round(bottom_rois[3] * spatial_scale);
int roi_end_h = round(bottom_rois[4] * spatial_scale); // Force malformed ROIs to be 1x1
int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);
int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
const T bin_size_h = static_cast<T>(roi_height)
/ static_cast<T>(pooled_height);
const T bin_size_w = static_cast<T>(roi_width)
/ static_cast<T>(pooled_width); int hstart = static_cast<int>(floor(ph * bin_size_h));
int wstart = static_cast<int>(floor(pw * bin_size_w));
int hend = static_cast<int>(ceil((ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil((pw + 1) * bin_size_w)); // Add roi offsets and clip to input boundaries
hstart = std::min(std::max(hstart + roi_start_h, 0), data_height);
hend = std::min(std::max(hend + roi_start_h, 0), data_height);
wstart = std::min(std::max(wstart + roi_start_w, 0), data_width);
wend = std::min(std::max(wend + roi_start_w, 0), data_width);
bool is_empty = (hend <= hstart) || (wend <= wstart); // Define an empty pooling region to be zero
float maxval = is_empty ? 0 : -FLT_MAX;
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd
int maxidx = -1;
const float* bottom_data = bottom_data_flat.data() + roi_batch_ind * num_channels * data_height * data_width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int bottom_index = (h * data_width + w) * num_channels + c;
if (bottom_data[bottom_index] > maxval) {
maxval = bottom_data[bottom_index];
maxidx = bottom_index;
}
}
}
output(b) = maxval;
argmax(b) = maxidx;
}
}; const DeviceBase::CpuWorkerThreads& worker_threads =
*(context->device()->tensorflow_cpu_worker_threads());
const int64 shard_cost =
num_rois * num_channels * pooled_height * pooled_width * spatial_scale;
Shard(worker_threads.num_threads, worker_threads.workers,
output.size(), shard_cost, shard);
}
private:
int pooled_height_;
int pooled_width_;
float spatial_scale_;
}; bool ROIPoolForwardLaucher(
const float* bottom_data, const float spatial_scale, const int num_rois, const int height,
const int width, const int channels, const int pooled_height,
const int pooled_width, const float* bottom_rois,
float* top_data, int* argmax_data, const Eigen::GpuDevice& d);
static void RoiPoolingKernel(
OpKernelContext* context, const Tensor* bottom_data, const Tensor* bottom_rois,
const float spatial_scale, const int num_rois, const int height,
const int width, const int channels, const int pooled_height,
const int pooled_width, const TensorShape& tensor_output_shape)
{
Tensor* output = nullptr;
Tensor* argmax = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(0, tensor_output_shape, &output));
OP_REQUIRES_OK(context, context->allocate_output(1, tensor_output_shape, &argmax)); if (!context->status().ok()) {
return;
} ROIPoolForwardLaucher(
bottom_data->flat<float>().data(), spatial_scale, num_rois, height,
width, channels, pooled_height, pooled_width, bottom_rois->flat<float>().data(),
output->flat<float>().data(), argmax->flat<int>().data(), context->eigen_device<Eigen::GpuDevice>());
} template <class T>
class RoiPoolOp<Eigen::GpuDevice, T> : public OpKernel {
public:
typedef Eigen::GpuDevice Device; explicit RoiPoolOp(OpKernelConstruction* context) : OpKernel(context) { // Get the pool height
OP_REQUIRES_OK(context,
context->GetAttr("pooled_height", &pooled_height_));
// Check that pooled_height is positive
OP_REQUIRES(context, pooled_height_ >= 0,
errors::InvalidArgument("Need pooled_height >= 0, got ",
pooled_height_));
// Get the pool width
OP_REQUIRES_OK(context,
context->GetAttr("pooled_width", &pooled_width_));
// Check that pooled_width is positive
OP_REQUIRES(context, pooled_width_ >= 0,
errors::InvalidArgument("Need pooled_width >= 0, got ",
pooled_width_));
// Get the spatial scale
OP_REQUIRES_OK(context,
context->GetAttr("spatial_scale", &spatial_scale_));
} void Compute(OpKernelContext* context) override
{
// Grab the input tensor
const Tensor& bottom_data = context->input(0);
const Tensor& bottom_rois = context->input(1); // data should have 4 dimensions.
OP_REQUIRES(context, bottom_data.dims() == 4,
errors::InvalidArgument("data must be 4-dimensional")); // rois should have 2 dimensions.
OP_REQUIRES(context, bottom_rois.dims() == 2,
errors::InvalidArgument("rois must be 2-dimensional")); // Number of ROIs
int num_rois = bottom_rois.dim_size(0);
// batch size
int batch_size = bottom_data.dim_size(0);
// data height
int data_height = bottom_data.dim_size(1);
// data width
int data_width = bottom_data.dim_size(2);
// Number of channels
int num_channels = bottom_data.dim_size(3); // construct the output shape
int dims[4];
dims[0] = num_rois;
dims[1] = pooled_height_;
dims[2] = pooled_width_;
dims[3] = num_channels;
TensorShape output_shape;
TensorShapeUtils::MakeShape(dims, 4, &output_shape); RoiPoolingKernel(context, &bottom_data, &bottom_rois, spatial_scale_, num_rois, data_height,
data_width, num_channels, pooled_height_, pooled_width_, output_shape); }
private:
int pooled_height_;
int pooled_width_;
float spatial_scale_;
}; // compute gradient
template <class Device, class T>
class RoiPoolGradOp : public OpKernel {
public:
explicit RoiPoolGradOp(OpKernelConstruction* context) : OpKernel(context) { // Get the pool height
OP_REQUIRES_OK(context,
context->GetAttr("pooled_height", &pooled_height_));
// Check that pooled_height is positive
OP_REQUIRES(context, pooled_height_ >= 0,
errors::InvalidArgument("Need pooled_height >= 0, got ",
pooled_height_));
// Get the pool width
OP_REQUIRES_OK(context,
context->GetAttr("pooled_width", &pooled_width_));
// Check that pooled_width is positive
OP_REQUIRES(context, pooled_width_ >= 0,
errors::InvalidArgument("Need pooled_width >= 0, got ",
pooled_width_));
// Get the spatial scale
OP_REQUIRES_OK(context,
context->GetAttr("spatial_scale", &spatial_scale_));
} void Compute(OpKernelContext* context) override
{
// Grab the input tensor
const Tensor& bottom_data = context->input(0);
const Tensor& bottom_rois = context->input(1);
const Tensor& argmax_data = context->input(2);
const Tensor& out_backprop = context->input(3); auto bottom_data_flat = bottom_data.flat<T>();
auto bottom_rois_flat = bottom_rois.flat<T>();
auto argmax_data_flat = argmax_data.flat<int32>();
auto out_backprop_flat = out_backprop.flat<T>(); // data should have 4 dimensions.
OP_REQUIRES(context, bottom_data.dims() == 4,
errors::InvalidArgument("data must be 4-dimensional")); // rois should have 2 dimensions.
OP_REQUIRES(context, bottom_rois.dims() == 2,
errors::InvalidArgument("rois must be 2-dimensional")); OP_REQUIRES(context, argmax_data.dims() == 4,
errors::InvalidArgument("argmax_data must be 4-dimensional")); OP_REQUIRES(context, out_backprop.dims() == 4,
errors::InvalidArgument("out_backprop must be 4-dimensional")); // Number of ROIs
int num_rois = bottom_rois.dim_size(0);
// batch size
int batch_size = bottom_data.dim_size(0);
// data height
int data_height = bottom_data.dim_size(1);
// data width
int data_width = bottom_data.dim_size(2);
// Number of channels
int num_channels = bottom_data.dim_size(3); // construct the output shape
TensorShape output_shape = bottom_data.shape(); // Create output tensors
Tensor* output_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor));
auto output = output_tensor->template flat<T>(); int pooled_height = pooled_height_;
int pooled_width = pooled_width_;
float spatial_scale = spatial_scale_;
auto shard = [pooled_height, pooled_width, spatial_scale,
num_rois, batch_size, data_height, data_width, num_channels,
&bottom_data_flat, &bottom_rois_flat, &argmax_data_flat,
&out_backprop_flat, &output](int64 start, int64 limit) {
for (int64 b = start; b < limit; ++b)
{
// (n, h, w, c) coords in bottom data
int n = b;
int c = n % num_channels;
n /= num_channels;
int w = n % data_width;
n /= data_width;
int h = n % data_height;
n /= data_height; float gradient = 0.0;
// Accumulate gradient over all ROIs that pooled this element
for (int roi_n = 0; roi_n < num_rois; ++roi_n)
{
const float* offset_bottom_rois = bottom_rois_flat.data() + roi_n * 5;
int roi_batch_ind = offset_bottom_rois[0];
// Skip if ROI's batch index doesn't match n
if (n != roi_batch_ind) {
continue;
} int roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
int roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
int roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
int roi_end_h = round(offset_bottom_rois[4] * spatial_scale); // Skip if ROI doesn't include (h, w)
const bool in_roi = (w >= roi_start_w && w <= roi_end_w &&
h >= roi_start_h && h <= roi_end_h);
if (!in_roi) {
continue;
} int offset = roi_n * pooled_height * pooled_width * num_channels;
const float* offset_top_diff = out_backprop_flat.data() + offset;
const int* offset_argmax_data = argmax_data_flat.data() + offset; // Compute feasible set of pooled units that could have pooled
// this bottom unit // Force malformed ROIs to be 1x1
int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);
int roi_height = std::max(roi_end_h - roi_start_h + 1, 1); const T bin_size_h = static_cast<T>(roi_height)
/ static_cast<T>(pooled_height);
const T bin_size_w = static_cast<T>(roi_width)
/ static_cast<T>(pooled_width); int phstart = floor(static_cast<int>(h - roi_start_h) / bin_size_h);
int phend = ceil(static_cast<int>(h - roi_start_h + 1) / bin_size_h);
int pwstart = floor(static_cast<int>(w - roi_start_w) / bin_size_w);
int pwend = ceil(static_cast<int>(w - roi_start_w + 1) / bin_size_w); phstart = std::min(std::max(phstart, 0), pooled_height);
phend = std::min(std::max(phend, 0), pooled_height);
pwstart = std::min(std::max(pwstart, 0), pooled_width);
pwend = std::min(std::max(pwend, 0), pooled_width); for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (offset_argmax_data[(ph * pooled_width + pw) * num_channels + c] == (h * data_width + w) * num_channels + c)
{
gradient += offset_top_diff[(ph * pooled_width + pw) * num_channels + c];
}
}
}
}
output(b) = gradient;
}
}; const DeviceBase::CpuWorkerThreads& worker_threads =
*(context->device()->tensorflow_cpu_worker_threads());
const int64 shard_cost =
num_rois * num_channels * pooled_height * pooled_width * spatial_scale;
Shard(worker_threads.num_threads, worker_threads.workers,
output.size(), shard_cost, shard);
}
private:
int pooled_height_;
int pooled_width_;
float spatial_scale_;
}; bool ROIPoolBackwardLaucher(const float* top_diff, const float spatial_scale, const int batch_size, const int num_rois,
const int height, const int width, const int channels, const int pooled_height,
const int pooled_width, const float* bottom_rois,
float* bottom_diff, const int* argmax_data, const Eigen::GpuDevice& d); static void RoiPoolingGradKernel(
OpKernelContext* context, const Tensor* bottom_data, const Tensor* bottom_rois, const Tensor* argmax_data, const Tensor* out_backprop,
const float spatial_scale, const int batch_size, const int num_rois, const int height,
const int width, const int channels, const int pooled_height,
const int pooled_width, const TensorShape& tensor_output_shape)
{
Tensor* output = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(0, tensor_output_shape, &output)); if (!context->status().ok()) {
return;
} ROIPoolBackwardLaucher(
out_backprop->flat<float>().data(), spatial_scale, batch_size, num_rois, height,
width, channels, pooled_height, pooled_width, bottom_rois->flat<float>().data(),
output->flat<float>().data(), argmax_data->flat<int>().data(), context->eigen_device<Eigen::GpuDevice>());
} template <class T>
class RoiPoolGradOp<Eigen::GpuDevice, T> : public OpKernel {
public:
explicit RoiPoolGradOp(OpKernelConstruction* context) : OpKernel(context) { // Get the pool height
OP_REQUIRES_OK(context,
context->GetAttr("pooled_height", &pooled_height_));
// Check that pooled_height is positive
OP_REQUIRES(context, pooled_height_ >= 0,
errors::InvalidArgument("Need pooled_height >= 0, got ",
pooled_height_));
// Get the pool width
OP_REQUIRES_OK(context,
context->GetAttr("pooled_width", &pooled_width_));
// Check that pooled_width is positive
OP_REQUIRES(context, pooled_width_ >= 0,
errors::InvalidArgument("Need pooled_width >= 0, got ",
pooled_width_));
// Get the spatial scale
OP_REQUIRES_OK(context,
context->GetAttr("spatial_scale", &spatial_scale_));
} void Compute(OpKernelContext* context) override
{
// Grab the input tensor
const Tensor& bottom_data = context->input(0);
const Tensor& bottom_rois = context->input(1);
const Tensor& argmax_data = context->input(2);
const Tensor& out_backprop = context->input(3); // data should have 4 dimensions.
OP_REQUIRES(context, bottom_data.dims() == 4,
errors::InvalidArgument("data must be 4-dimensional")); // rois should have 2 dimensions.
OP_REQUIRES(context, bottom_rois.dims() == 2,
errors::InvalidArgument("rois must be 2-dimensional")); OP_REQUIRES(context, argmax_data.dims() == 4,
errors::InvalidArgument("argmax_data must be 4-dimensional")); OP_REQUIRES(context, out_backprop.dims() == 4,
errors::InvalidArgument("out_backprop must be 4-dimensional")); // Number of ROIs
int num_rois = bottom_rois.dim_size(0);
// batch size
int batch_size = bottom_data.dim_size(0);
// data height
int height = bottom_data.dim_size(1);
// data width
int width = bottom_data.dim_size(2);
// Number of channels
int channels = bottom_data.dim_size(3); // construct the output shape
TensorShape output_shape = bottom_data.shape(); RoiPoolingGradKernel(
context, &bottom_data, &bottom_rois, &argmax_data, &out_backprop,
spatial_scale_, batch_size, num_rois, height, width, channels, pooled_height_,
pooled_width_, output_shape); }
private:
int pooled_height_;
int pooled_width_;
float spatial_scale_;
}; REGISTER_KERNEL_BUILDER(Name("RoiPool").Device(DEVICE_CPU).TypeConstraint<float>("T"), RoiPoolOp<CPUDevice, float>);
REGISTER_KERNEL_BUILDER(Name("RoiPoolGrad").Device(DEVICE_CPU).TypeConstraint<float>("T"), RoiPoolGradOp<CPUDevice, float>);
#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(Name("RoiPool").Device(DEVICE_GPU).TypeConstraint<float>("T"), RoiPoolOp<Eigen::GpuDevice, float>);
REGISTER_KERNEL_BUILDER(Name("RoiPoolGrad").Device(DEVICE_GPU).TypeConstraint<float>("T"), RoiPoolGradOp<Eigen::GpuDevice, float>);
#endif
logo 的识别:
anchor : 的ratio,logo的长宽比例的选择
的scale,大小,较小
faster rcnn 做识别的更多相关文章
- 使用Faster R-CNN做目标检测 - 学习luminoth代码
像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程 https://mp.weixin.qq.com/s/M_i38L2brq69BYzmaPeJ9w 直接参考开源目标检测代码lumin ...
- faster rcnn源码阅读笔记1
自己保存的源码阅读笔记哈 faster rcnn 的主要识别过程(粗略) (开始填坑了): 一张3通道,1600*1600图像输入中,经过特征提取网络,得到100*100*512的feature ma ...
- Faster RCNN代码理解(Python)
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...
- 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...
- object detection技术演进:RCNN、Fast RCNN、Faster RCNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
- 【深度学习】目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)
目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括F ...
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
- Faster RCNN 学习笔记
下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层.Pooling层及全连接的分类和目标定位基本相同. 一). ...
随机推荐
- NOIP 飞扬的小鸟 题解
题目描述 Flappy Bird是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管或者掉在地上的话,便宣 ...
- rdesktop ERROR: CredSSP: Initialize failed, do you have correct kerberos tgt initialized ? Failed to connect, CredSSP required by server
错误信息: ERROR: CredSSP: Initialize failed, do you have correct kerberos tgt initialized ? Failed to co ...
- JAVA多线程之volatile 与 synchronized 的比较
一,volatile关键字的可见性 要想理解volatile关键字,得先了解下JAVA的内存模型,Java内存模型的抽象示意图如下: 从图中可以看出: ①每个线程都有一个自己的本地内存空间--线程栈空 ...
- 只用200行Go代码写一个自己的区块链!
Coral Health · 大约23小时之前 · 220 次点击 · 预计阅读时间 7 分钟 · 不到1分钟之前 开始浏览 区块链是目前最热门的话题,广大读者都听说过比特币,或许还有智能合约,相信大 ...
- react-native中的navigator
第一步安装相关插件 添加一些依赖 package com.awesomeproject; import com.facebook.react.ReactActivity; import com.fac ...
- margin纵向重叠
速记: 如p的纵向 margin 是 16px,那么两个之间纵向的距离是多少?-- 按常理来说应该是 16 + 16 = 32px,但是答案仍然是 16px. 因为纵向的 margin 是会重叠的,如 ...
- Ubuntu17安装Chrome有效
http://blog.csdn.net/NFMSR/article/details/78348000 1.进入 Ubuntu 16.04 桌面,按下 Ctrl + Alt + t 键盘组合键,启动终 ...
- java 网络编程 TCP协议 java 服务器和客户端 java socket编程
一个 HelloWord 级别的 Java Socket 通信的例子.通讯过程: 先启动 Server 端,进入一个死循环以便一直监听某端口是否有连接请求.然后运行 Client 端,客 ...
- typescript和coffeescript简介
typescript 1.什么是typescript?和JavaScript有什么关系? 1.它是一门独立的语言,实现了自己的编译器 2.它的目标代码是JavaScript(很多语言的目标代码是机 ...
- (string 数组) leetcode 804. Unique Morse Code Words
International Morse Code defines a standard encoding where each letter is mapped to a series of dots ...