基于因子分解的隐层变量学习,应用于短语句语种识别模型的自适应

 
 

LFVs(Language Feature Vectors,语种特征向量)[11],与BSVs(Bottleneck Speaker Vectors)类似,即瓶颈特征

 
 

3.1. 神经元调制

由于说话人特性的变化反映在语音信号中,因此将表示说话人适应声学特性的特征拼接到特征中。如VTLN或fMLLR,是直接对声学特征进行操作的自适应方法。可以训练一个说话人自适应系统以基于说话人属性直接对输入特征进行转换,这样效果与基于i-Vector的自适应类似[8]。但是与说话人变化特性相比,语言特性是更高阶的概念。在某些方面基于声学。例如,具有相同音素的多种语言,可以在某种程度上可以观察到语言特定属性。但是,声学特征变换适应性方法无法考虑到音位配列学或者不同声学单元集的知识。在这里,在更深层次的DNN处添加特征可能会改善自适应性。[17]基于Meta-PI网络进行了尝试。关键点是使用Meta-PI连接,它允许通过将隐层单元乘以系数来调制神经元的输出。应用于语种自适应,我们用LFV来对隐藏层的输出进行调制。基于语种特征的调制,LSTM单元的输出被衰减或增强。这迫使隐藏层中的单元基于语种特征来学习或适应。调制可以被认为与Dropout有关[18],其中网络连接以随机概率被丢弃。在结果部分中,我们将此方法称为"LFV调制"。

所示的网络配置。基​​本架构受百度Deepspeech 2的启发。它将两个TDNN/CNN层与4个双向LSTM层组合在一起。输出层是一个前馈层,它将最后一个LSTM层的输出映射到目标。将每层LSTM单元维数设定为LFV维数的数倍。这样就可以构建包含相同单位数量的LSTM单元的隐藏层组。然后用LFV的某一维对每组的输出进行调制。该图显示了两种配置,"LFV 拼接"和"LFV 调制",但一次只应用一种方法。在初步实验中,我们得出在第二个LSTM层的输出处进行调制可以获得最佳性能。

 
 

Factorized Hidden Variability Learning For Adaptation Of Short Duration Language Identification Models的更多相关文章

  1. Coursera Deep Learning笔记 序列模型(三)Sequence models & Attention mechanism(序列模型和注意力机制)

    参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用" ...

  2. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

  3. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  4. Deep Learning in a Nutshell: History and Training

    Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...

  5. Machine Learning for Developers

    Machine Learning for Developers Most developers these days have heard of machine learning, but when ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

  9. Rolling in the Deep (Learning)

    Rolling in the Deep (Learning) Deep Learning has been getting a lot of press lately, and is one of t ...

随机推荐

  1. [NOI2018]归程

    今年D1T1,平心而论,如果能想到kruskal重构树还是很简单的. ......苟屁啊!虽然跟其他的比是简单些,但是思维难度中上,代码难度中上,怎么看都很符合NOI T1啊. 本题还有可持久化并查集 ...

  2. px转换成bp单位的工具函数

    import {Dimensions} from 'react-native' //当前屏幕的高度 const deviceH = Dimensions.get('window').height // ...

  3. R语音:解决cor.test报错的 'y'必需是数值矢量

    'y'必需是数值矢量,产生该类报错可能是含有NA值. 只需要在该数值上加入as.double函数即可.见下命令: ##先测试是不是数值型 is.numeric(data[,2]) #[1] FALSE ...

  4. node.js(node.js+mongoose小案例)_实现简单的注册登录退出

    一.前言 通过node.js基本知识对node.js基本知识的一个简单应用 1.注册 2.登录 3.退出 二.基本内容 1.项目结构搭建如图所示 2.这个小案列中用到了art-template子模板以 ...

  5. mysql体系结构和sql查询执行过程简析

    一: mysql体系结构 1)Connectors 不同语言与 SQL 的交互 2)Management Serveices & Utilities 系统管理和控制工具 备份和恢复的安全性,复 ...

  6. mysql5.6 主从同步配置

    一:配置前说明 在centos 6环境下配置 mysql 5.6主从同步 准备两台测试的虚拟机,2台虚拟机上都安装mysql软件,并开启mysql服务主master : 192.168.1.110从s ...

  7. 递归思维判断数组a[N]是否为一个递增数组

    递归的方法:记录当前最大的,并且判断当前的是否比这个还大,大则继续,否则返回false结束: bool fun( int a[], int n ) { ) { return true; } ) { ] ...

  8. Hadoop问题:java.net.SocketException: Network is unreachable

    问题描述:Failed on local exception: java.net.SocketException: Network is unreachable; Host Details : loc ...

  9. input:checked + label用法

    input:checked ~ label   :相邻同胞选择器,选择被选中的input标签后 所有的label标签[input  和 label标签有共同的父元素]: input:checked + ...

  10. WebService概念和使用

    1.WebService到底是什么 一言以蔽之:WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓跨编程语言和跨操作平台,就是说服务端程序采用java编写,客户端程序则可以采用 ...