隐私计算FATE-多分类神经网络算法测试
一、说明
本文分享基于 Fate
使用 横向联邦
神经网络算法
对 多分类
的数据进行 模型训练
,并使用该模型对数据进行 多分类预测
。
- 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种(0 或者 1),例如性别只有 男 或者 女;此时的分类算法其实是在构建一个分类线将数据划分为两个类别。
- 多分类算法:是指待预测的 label 标签的取值可能有多种情况,例如个人爱好可能有 篮球、足球、电影 等等多种类型。常见算法:Softmax、SVM、KNN、决策树。
关于 Fate 的核心概念、单机部署、训练以及预测请参考以下相关文章:
二、准备训练数据
上传到 Fate 里的数据有两个字段名必需是规定的,分别是主键为 id
字段和分类字段为 y
字段,y
字段就是所谓的待预测的 label 标签;其他的特征字段(属性)可任意填写,例如下面例子中的 x0
- x9
例如有一条用户数据为:
收入
: 10000,负债
: 5000,是否有还款能力
: 1 ;数据中的收入
和负债
就是特征字段,而是否有还款能力
就是分类字段。
本文只描述关键部分,关于详细的模型训练步骤,请查看文章《隐私计算FATE-模型训练》
2.1. guest端
10条数据,包含1个分类字段 y
和 10 个标签字段 x0
- x9
y 值有 0、1、2、3 四个分类
上传到 Fate 中,表名为 muti_breast_homo_guest
命名空间为 experiment
2.2. host端
10条数据,字段与 guest 端一样,但是内容不一样
上传到 Fate 中,表名为 muti_breast_homo_host
命名空间为 experiment
三、执行训练任务
3.1. 准备dsl文件
创建文件 homo_nn_dsl.json
内容如下 :
{
"components": {
"reader_0": {
"module": "Reader",
"output": {
"data": [
"data"
]
}
},
"data_transform_0": {
"module": "DataTransform",
"input": {
"data": {
"data": [
"reader_0.data"
]
}
},
"output": {
"data": [
"data"
],
"model": [
"model"
]
}
},
"homo_nn_0": {
"module": "HomoNN",
"input": {
"data": {
"train_data": [
"data_transform_0.data"
]
}
},
"output": {
"data": [
"data"
],
"model": [
"model"
]
}
}
}
}
3.2. 准备conf文件
创建文件 homo_nn_multi_label_conf.json
内容如下 :
{
"dsl_version": 2,
"initiator": {
"role": "guest",
"party_id": 9999
},
"role": {
"arbiter": [
10000
],
"host": [
10000
],
"guest": [
9999
]
},
"component_parameters": {
"common": {
"data_transform_0": {
"with_label": true
},
"homo_nn_0": {
"encode_label": true,
"max_iter": 15,
"batch_size": -1,
"early_stop": {
"early_stop": "diff",
"eps": 0.0001
},
"optimizer": {
"learning_rate": 0.05,
"decay": 0.0,
"beta_1": 0.9,
"beta_2": 0.999,
"epsilon": 1e-07,
"amsgrad": false,
"optimizer": "Adam"
},
"loss": "categorical_crossentropy",
"metrics": [
"accuracy"
],
"nn_define": {
"class_name": "Sequential",
"config": {
"name": "sequential",
"layers": [
{
"class_name": "Dense",
"config": {
"name": "dense",
"trainable": true,
"batch_input_shape": [
null,
18
],
"dtype": "float32",
"units": 5,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"class_name": "GlorotUniform",
"config": {
"seed": null,
"dtype": "float32"
}
},
"bias_initializer": {
"class_name": "Zeros",
"config": {
"dtype": "float32"
}
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "Dense",
"config": {
"name": "dense_1",
"trainable": true,
"dtype": "float32",
"units": 4,
"activation": "sigmoid",
"use_bias": true,
"kernel_initializer": {
"class_name": "GlorotUniform",
"config": {
"seed": null,
"dtype": "float32"
}
},
"bias_initializer": {
"class_name": "Zeros",
"config": {
"dtype": "float32"
}
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
}
]
},
"keras_version": "2.2.4-tf",
"backend": "tensorflow"
},
"config_type": "keras"
}
},
"role": {
"host": {
"0": {
"reader_0": {
"table": {
"name": "muti_breast_homo_host",
"namespace": "experiment"
}
}
}
},
"guest": {
"0": {
"reader_0": {
"table": {
"name": "muti_breast_homo_guest",
"namespace": "experiment"
}
}
}
}
}
}
}
注意
reader_0
组件的表名和命名空间需与上传数据时配置的一致。
3.3. 提交任务
执行以下命令:
flow job submit -d homo_nn_dsl.json -c homo_nn_multi_label_conf.json
执行成功后,查看 dashboard
显示:
四、准备预测数据
与前面训练的数据字段一样,但是内容不一样,y
值全为 0
4.1. guest端
上传到 Fate 中,表名为 predict_muti_breast_homo_guest
命名空间为 experiment
4.2. host端
上传到 Fate 中,表名为 predict_muti_breast_homo_host
命名空间为 experiment
五、准备预测配置
本文只描述关键部分,关于详细的预测步骤,请查看文章《隐私计算FATE-离线预测》
创建文件 homo_nn_multi_label_predict.json
内容如下 :
{
"dsl_version": 2,
"initiator": {
"role": "guest",
"party_id": 9999
},
"role": {
"arbiter": [
10000
],
"host": [
10000
],
"guest": [
9999
]
},
"job_parameters": {
"common": {
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202207061504081543620",
"job_type": "predict"
}
},
"component_parameters": {
"role": {
"guest": {
"0": {
"reader_0": {
"table": {
"name": "predict_muti_breast_homo_guest",
"namespace": "experiment"
}
}
}
},
"host": {
"0": {
"reader_0": {
"table": {
"name": "predict_muti_breast_homo_host",
"namespace": "experiment"
}
}
}
}
}
}
}
注意以下两点:
model_id
和model_version
需修改为模型部署后的版本号。
reader_0
组件的表名和命名空间需与上传数据时配置的一致。
五、执行预测任务
执行以下命令:
flow job submit -c homo_nn_multi_label_predict.json
执行成功后,查看 homo_nn_0
组件的数据输出:
可以看到算法输出的预测结果。
扫码关注有惊喜!
隐私计算FATE-多分类神经网络算法测试的更多相关文章
- 《BI那点儿事》Microsoft 神经网络算法
Microsoft神经网络是迄今为止最强大.最复杂的算法.要想知道它有多复杂,请看SQL Server联机丛书对该算法的说明:“这个算法通过建立多层感知神经元网络,建立分类和回归挖掘模型.与Micro ...
- 数据挖掘系列(9)——BP神经网络算法与实践
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropaga ...
- 利用神经网络算法的C#手写数字识别
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...
- 使用Python scikit-learn 库实现神经网络算法
1:神经网络算法简介 2:Backpropagation算法详细介绍 3:非线性转化方程举例 4:自己实现神经网络算法NeuralNetwork 5:基于NeuralNetwork的XOR实例 6:基 ...
- 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示
#K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...
- 经典卷积神经网络算法(5):ResNet
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- 利用神经网络算法的C#手写数字识别(一)
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...
- 隐私计算FATE-模型训练
一.说明 本文分享基于 Fate 自带的测试样例,进行 纵向逻辑回归 算法的模型训练,并且通过 FATE Board 可视化查看结果. 本文的内容为基于 <隐私计算FATE-概念与单机部署指南& ...
- 如何用70行Java代码实现深度神经网络算法(转)
对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题 ...
随机推荐
- No value specified for 'Date' BeanUtils.copyProperties 日期为空 转型错误
BEGIN; 最近在用spring data,使用的hibernate实现,然后用了一对多等关系配置,导致PO类转换JSON时会死循环,最后使用VO接受数据解决该问题.PO与VO相互转换我用的是org ...
- Objective-C 基础教程第九章,内存管理
目录 Object-C 基础教程第九章,内存管理 前言: 对象生命周期 引用计数 RetainCount1项目例子 对象所有权 访问方法中的保留和释放 自动释放 所有对象放入池中 自动释放池的销毁时间 ...
- Revit二次开发之添加选项卡和按钮
我们日常在revit开发中经常会用到按钮,可以通过revitAPI提供的接口创建按钮,今天我简单介绍一下两种按钮,一种是单命令按钮,另一种是含下拉菜单的按钮,包括创建他们的方法. 实现方法 1.实 ...
- jstl操作session
1.jstl操作session(添加.删除session中的值)
- Linux 实现静态路由实验
环境: 四台主机: A主机:eth0 NAT模式 R1主机:eth0 NAT模式,eth1 仅主机模式 R2主机:eth0 桥接模式,eth1仅主机模式 B主机:eth0 桥接模式 手动修改IP地址 ...
- systemd进程管理工具实战教程
关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 1. systemd介绍 systemd是目前Linux系统上主要的系统守护进程管理工具,由于 ...
- 为什么Redis要比Memcached更火?
关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 前言 我们都知道,Redis和Memcached都是内存数据库,它们的访问速度非常之快.但我们 ...
- @Inherited 原注解功能介绍
@Inherited 底层 package java.lang.annotation; /** * Indicates that an annotation type is automatically ...
- jmeter 基础使用
相关入门链接 JMeter 5.4.1 教程 插件安装 并发线程 ServerAgent 服务器监控 ServerAgent 下载 Ubuntu 20.04 install jdk/jre 服务器监控 ...
- 通过Swagger接口导出模板文件时报错:URL.createObjectURL: Argument 1 is not valid for any of the 1-argument overloads.
问题描述:通过Swagger接口导出Excel模板文件时,报错:URL.createObjectURL: Argument 1 is not valid for any of the 1-argume ...