这次来聊聊Hadoop中使用广泛的分布式计算方案——MapReduce。MapReduce是一种编程模型,还是一个分布式计算框架

MapReduce作为一种编程模型功能强大,使用简单。运算内容不只是常见的数据运算,几乎大数据中常见的计算需求都可以通过它来实现。使用的时候仅仅需要通过实现Map和Reduce接口的方式来完成计算逻辑,其中Map的输入是一对<Key, Value>,经过计算后输出一对<Key, Value>;然后将相同Key合并,形成<Key, Value>集合;再将这个集合输入Reduce。

下面,就以WordCount为例,熟悉一下MapReduce:

WordCount是为了统计文本中不用词汇出现的次数。如果统计一篇文本的内容,只需要写一个程序将文本数据读入内存,创建一个字典,记录每个词出现的次数就可以了。但是如果想统计互联网中网页的词汇数量,就需要用MapReduce来解决。

public class WordCount {

  public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}

从上面代码不难发现,MapReduce核心是一个map函数和一个reduce函数。map函数的输入主要是一个<Key, Value>对,在这个例子里,Value是要统计的所有文本中的一行数据,Key在一般计算中都不会用到。map函数将文本中的单词提取出来,针对每个单词输出一个<word, 1>。MapReduce计算框架会将这些<word , 1>,合并成<word , <1,1,1,1,1,1,1…>>,然后传给reduce函数。reduce函数将这个集合里的1求和,再将word和这个sum组成一个<Key, Value>,也就是<word, sum>输出。apReduce框架为每个数据块分配一个map函数去计算,从而实现大数据的分布式计算。

MapReduce在运行过程中有三个关键进程,分别是Driver进程、JobTracker进程、TaskTracker进程。

1.Driver进程:是启动MapReduce的主入口,主要是实现Map和Reduce类、输入输出文件路径等,并提交作业给Hadoop集群,也就是下面的JobTracker进程。

2.JobTracker进程:根据输入数据数量,命令TaskTracker进程启动相应数量的Map和Reduce进程,并管理整个生命周期的任务调度和监控。

3.TaskTracker进程:负责启动和管理Map以及Reduce进程。因为需要每个数据块都有对应的map函数,TaskTracker进程通常和HDFS的DataNode进程启动在同一个服务器。

JobTracker进程和TaskTracker进程是主从关系,同一时间提供服务的主服务器通常只有一台,从服务器有多台,所有的从服务器听从主服务器的控制和调度安排。主服务器负责为应用程序分配服务器资源以及作业执行的调度,而具体的计算操作则在从服务器上完成。MapReduce的主服务器就是JobTracker,从服务器就是TaskTracker。

1.JobClient将包含MapReduce的JAR包存储在HDFS中,将来这些JAR包会分发给Hadoop集群中的服务器执行计算。

2.向JobTracker提交Job。

3.JobTracker根据调度策略创建JobInProcess树,每个作业都会有一个自己的JobInProcess树。

4.JobInProcess根据输入数据的块数和配置中的Reduce数目创建相应数量的TaskInProcess。

5.TaskTracker和JobTracker进行心跳通信。

6.如果TaskTracker有空闲的计算资源,JobTracker就会给它分配任务。

7.TaskTracker收到任务类型(是Map还是Reduce)和任务参数(JAR包路径、输入数据文件路径),启动相应的进程。

8.Map或者Reduce进程启动后,检查本地是否有要执行任务的JAR包文件,如果没有,就去HDFS上下载,然后加载Map或者Reduce代码开始执行。

9.如果是Map进程,从HDFS读取数据;如果是Reduce进程,将结果写出到HDFS。

我们仅仅是编写一个map函数和一个reduce函数就可以了,不用关心这两个函数是如何被分布启动到集群上的,也不用关心数据块又是如何分配给计算任务的。

MapReduce框架要将一个相对简单的程序,在分布式的大规模服务器集群上并行执行起来却并不简单。理解MapReduce作业的启动和运行机制,对理解大数据的核心原理,做到真正意义上把握大数据作用巨大。

我眼中的大数据(三)——MapReduce的更多相关文章

  1. 大数据技术 - MapReduce的Combiner介绍

    本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘I ...

  2. 【机器学习实战】第15章 大数据与MapReduce

    第15章 大数据与MapReduce 大数据 概述 大数据: 收集到的数据已经远远超出了我们的处理能力. 大数据 场景 假如你为一家网络购物商店工作,很多用户访问该网站,其中有些人会购买商品,有些人则 ...

  3. 大数据与Mapreduce

    第十五章 大数据与Maprudece 一.引言 实际生活中的数据量是非常庞大的,采用单机运行的方式可能需要若干天才能出结果,这显然不符合我们的预期,为了尽快的获得结果,我们将采用分布式的方式,将计算分 ...

  4. 【技术与商业案例解读笔记】095:Google大数据三驾马车笔记

     1.谷歌三驾马车地位 [关键词]开启时代,指明方向 聊起大数据,我们通常言必称谷歌,谷歌有“三驾马车”:谷歌文件系统(GFS).MapReduce和BigTable.谷歌的“三驾马车”开启了大数据时 ...

  5. 大数据技术 - MapReduce的Shuffle及调优

    本章内容我们学习一下 MapReduce 中的 Shuffle 过程,Shuffle 发生在 map 输出到 reduce 输入的过程,它的中文解释是 “洗牌”,顾名思义该过程涉及数据的重新分配,主要 ...

  6. FusionInsight大数据开发---MapReduce与YARN应用开发

    MapReduce MapReduce的基本定义及过程 搭建开发环境 代码实例及运行程序 MapReduce开发接口介绍 1. MapReduce的基本定义及过程 MapReduce是面向大数据并行处 ...

  7. 大数据开篇 MapReduce初步

    最近在学习大数据相关的东西,开这篇专题来记录一下学习过程.今天主要记录一下MapReduce执行流程解析 引子(我们需要解决一个简单的单词计数(WordCount)问题) 1000个单词 嘿嘿,100 ...

  8. 我眼中的大数据(二)——HDFS

    Hadoop的第一个产品是HDFS,可以说分布式文件存储是分布式计算的基础,也可见分布式文件存储的重要性.如果我们将大数据计算比作烹饪,那么数据就是食材,而Hadoop分布式文件系统HDFS就是烧菜的 ...

  9. 大数据开发 | MapReduce介绍

    1.  MapReduce 介绍 1.1MapReduce的作用 假设有一个计算文件中单词个数的需求,文件比较多也比较大,在单击运行的时候机器的内存受限,磁盘受限,运算能力受限,而一旦将单机版程序扩展 ...

随机推荐

  1. manjaro 安装后的基本配置

    第一步:设置官方镜像源 sudo pacman-mirrors -i -c China -m rank # 输入以上命令后会有弹出框,选择一个国内镜像(推荐 https://mirrors.ustc. ...

  2. JetBrains系列软件激活

    1.将以下记录加入hosts文件 0.0.0.0 account.jetbrains.com0.0.0.0 www.jetbrains.com 2.激活方式选择licence server,填写以下激 ...

  3. JsonPath:针对json的强大的规则解析与参数查找工具

    项目特点 GitHub项目地址:https://github.com/json-path/JsonPath 主要功能: 将Json字符串转为Java Map对象(这个不算什么,FastJson之类的工 ...

  4. ApiDay001 __02 Java_StringBuilder

    Java 核心API StringBuilder String 类型的连接性能不好,Java提供了StringBuilder解决字符串连接性能问题. 简单理解 StringBuilder性能好!(重点 ...

  5. [SWPU2019]Web1-1|SQL注入

    1.打开之后界面如下: 2.查看源代码.登录注入等未发现有用信息,结果如下: 3.进行注册试试,注册时发现admin账户已被注册,随便注册一个账户并登录,结果如下: 申请发布广告页面如下: 4.发布广 ...

  6. 「Python实用秘技09」更好用的函数运算缓存

    本文完整示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/PythonPracticalSkills 这是我的系列文章「Python实用秘技」的第9期 ...

  7. Linux系统上传公钥不生效问题

    Authentication refused: bad ownership or modes for file /home/yanbo.xu/.ssh/authorized_keys 原因: sshd ...

  8. B+树索引页大小是如何确定的?

    B+树简介 在正式介绍本文的主题前,需要对 B+ 树有一定的了解,B+树是一种磁盘上数据的索引结构,大概长这个样子. B+树的叶子节点是所有的数据,非叶子节点称为索引页,索引页里有若干个索引项,本例中 ...

  9. Nginx 平滑升级、Nginx的一些基础配置

    # Nginx 平滑升级 # 方案一:使用Nginx服务信号进行升级 # 1.将就版本的sbin目录下可执行nginx进行备份(mv nginx nginxold) # 2.将新版本 configur ...

  10. HttpClient 在vivo内销浏览器的高并发实践优化

    作者:vivo 互联网服务器团队- Zhi Guangquan HttpClient作为Java程序员最常用的Http工具,其对Http连接的管理能简化开发,并且提升连接重用效率:在正常情况下,Htt ...