禁止的回文子串 Dyslexic Gollum
UVA1633
一个长的回文串都可以由短的回文串拓展而来,只要短的回文在左右两端增加相同的字符即可。因此,在考虑长度为NNN的01串时,只要在从长度为1向NNN拓展的过程中,保证后KKK个字符不是回文串即可。
定义:
dp[i][j]dp[i][j]dp[i][j]为考虑长度为i的串的后KKK个字符组成的子串为jjj时的合法字符串的数量。IsPalindrome[i][j]IsPalindrome[i][j]IsPalindrome[i][j]为长度为iii的字符串jjj是否为回文串。由于K≤10K\leq 10K≤10,小于intintint的32为并且为01串,可以用一个intintint来保存字符串jjj,进行状态压缩。
求IsPalindrome
初始化:
IsPalindrome[1][0]=dp[1][1]=trueIsPalindrome[2][0]=dp[2][3]=trueIsPalindrome[1][0]=dp[1][1]=true\\IsPalindrome[2][0]=dp[2][3]=trueIsPalindrome[1][0]=dp[1][1]=trueIsPalindrome[2][0]=dp[2][3]=true即0,1,00,11为回文串。
转移方程:
IsPalindrome[i][j]=IsPalindrome[i−2][j去掉第一个字符和最后一个字符形成的子串]&&(j的第一个字符==j的最后一个字符)IsPalindrome[i][j]=IsPalindrome[i-2][j去掉第一个字符和最后一个字符形成的子串]\\\&\&\\(j的第一个字符==j的最后一个字符)IsPalindrome[i][j]=IsPalindrome[i−2][j去掉第一个字符和最后一个字符形成的子串]&&(j的第一个字符==j的最后一个字符)典型的中心拓展法,一个回文串如果左右各增加一个相同的字符,则形成的新字符串仍然是回文串。
求dp
初始化:
dp[0][0]=1,其他元素=0dp[0][0]=1,其他元素=0dp[0][0]=1,其他元素=0即空串绝对合法且种类唯一。
转移方程:
int getState(int State, int Last) {
//如果State的长度大于等于K,则去掉最左边
if (State >= 1 << K - 1) {
State -= 1 << K - 1;
}
//往右边拓展一格
return State << 1 | Last;
}
for (int i = 1; i <= N; ++i) {
for (int j = 0; j <= (1 << K) - 1; ++j) {
//如果前一状态的合法数为0,就没必要继续了
if (dp[i - 1][j] == 0) {
continue;
}
//枚举最右边添加0还是1
for (int x = 0; x <= 1; ++x) {
//将j往右拓展一格
int&& CurState = getState(j, x);
///如果i的后K个字符往右移动一位组成了回文串,就跳过
if (i >= K && IsPalindrome[K][CurState]) {
continue;
}
//如果i的后K个字符加上x形成回文串,就跳过(为了防止K为偶数当前j长度为奇数的错误)
if (i >= K + 1 && IsPalindrome[K + 1][j << 1 | x]) {
continue;
}
//如果向右移动一位并且最右边为x时合法,累加方案数
dp[i][CurState] += dp[i - 1][j];
dp[i][CurState] %= mod;
}
}
}
值得注意的是这一段代码:
if (i >= K + 1 && IsPalindrome[K + 1][j << 1 | x]) {
continue;
}
如果当前j的状态为0010,xxx=0,则j往右一位变成0100,不是回文串,当是此时00100已经形成了回文串。因为回文串长度的奇偶有些差异,因此需要在向右判断一位。
AC代码:
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<map>
using namespace std;
constexpr static int inf = 0x3f3f3f3f;
constexpr static int mod = 1000000007;
int N, K;
int dp[401][(1 << 11) | 1];
bool IsPalindrome[12][(1 << 11) | 1]{ false };
//i=4 return 0110
int getBit(const int&i) {
return (1 << i - 1) - 2;
}
void InitPalindrome() {
IsPalindrome[1][0] = IsPalindrome[1][1] = true;
IsPalindrome[2][0] = IsPalindrome[2][3] = true;
for (int i = 3; i <= 11; ++i) {
for (int j = 0; j <= (1 << i) - 1; ++j) {
IsPalindrome[i][j] = IsPalindrome[i - 2][(j & getBit(i)) >> 1] && ((j >> i - 1) == (j & 1));
}
}
}
int getState(int State, int Last) {
if (State >= 1 << K - 1) {
State -= 1 << K - 1;
}
return State << 1 | Last;
}
int DP() {
memset(dp, 0x0, sizeof(dp));
dp[0][0] = 1;
for (int i = 1; i <= N; ++i) {
for (int j = 0; j <= (1 << K) - 1; ++j) {
if (dp[i - 1][j] == 0) {
continue;
}
for (int x = 0; x <= 1; ++x) {
int&& CurState = getState(j, x);
if (i >= K && IsPalindrome[K][CurState]) {
continue;
}
if (i >= K + 1 && IsPalindrome[K + 1][j << 1 | x]) {
continue;
}
dp[i][CurState] += dp[i - 1][j];
dp[i][CurState] %= mod;
}
}
}
int&& Ans = 0;
for (int i = 0; i <= (1 << K) - 1; ++i) {
Ans = (Ans + dp[N][i]) % mod;
}
return Ans;
}
int main() {
int T;
ios::sync_with_stdio(false);
cin >> T;
InitPalindrome();
for (int Case = 1; Case <= T; ++Case) {
cin >> N >> K;
cout << DP() << endl;
}
return 0;
}
禁止的回文子串 Dyslexic Gollum的更多相关文章
- LeetCode[5] 最长的回文子串
题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- 最长回文子串-LeetCode 5 Longest Palindromic Substring
题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- 最长回文子串(Longest Palindromic Substring)
这算是一道经典的题目了,最长回文子串问题是在一个字符串中求得满足回文子串条件的最长的那一个.常见的解题方法有三种: (1)暴力枚举法,以每个元素为中心同时向左和向右出发,复杂度O(n^2): (2)动 ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 1089 最长回文子串 V2(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa ...
- 51nod1089(最长回文子串之manacher算法)
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...
- 求最长回文子串:Manacher算法
主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...
- [译+改]最长回文子串(Longest Palindromic Substring) Part II
[译+改]最长回文子串(Longest Palindromic Substring) Part II 原文链接在http://leetcode.com/2011/11/longest-palindro ...
- [译]最长回文子串(Longest Palindromic Substring) Part I
[译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...
- Manacher's algorithm: 最长回文子串算法
Manacher 算法是时间.空间复杂度都为 O(n) 的解决 Longest palindromic substring(最长回文子串)的算法.回文串是中心对称的串,比如 'abcba'.'abcc ...
随机推荐
- File.createTempFile()
File.createTempFile()的两个参数,是前缀和后缀,临时文件的文件名,会在前缀和后缀中各截取一部分,再拼接上随机数进行生成: 推荐手动指定目录,尽量指定到项目路径下,默认的磁盘位置,有 ...
- windows平台下软件最小化后无法打开的解决方法
今天打开电脑后,双击桌面软件图标,软件启动画面出现,等了几秒后直接最小化窗口,感觉有点奇怪.点击任务栏图标后没有反应,软件界面没出现. 以为软件是不是安装破损什么的,重新安装后问题依旧,奇怪,究竟是什 ...
- docker镜像的获取、查看、删除、docker镜像管理、docker容器管理
在不想弄乱本地及其环境下该如何进行系软件的安装? 下载安装docker工具 获取该软件的docker镜像(你以后想要用各种工具,基本都能够搜索docker search nginx:版本号到合适的镜像 ...
- 【stm32】的PWM外设|学习笔记
PWM简单理解就是生成PWM方波,主要可控的参数有周期,占空比,极性. stm32内置PWM生成器,我想应该是用TIM加比较器来实现的吧,那么如何实现stm32输出PWM波呢? 一.得知道那些IO可以 ...
- 一例OSS问题排查
某品牌OSS存储,使用IP+PORT可以正常访问.使用NG代理后,不论是IP还是域名访问都不支持SDK访问,但是使用S3客户端可以正常访问. 通过抓包对比发现,S3客户端如下 SDK访问抓包如下 判断 ...
- Redis缓存之spring boot 部署
一.环境准备工作 # 1.JDK 安装与环境变量# 下载相应的jdk软件包,然后解压安装,我这里包名称为:jdk-8u102-linux-x64.tar.gz [root@localhost data ...
- nginx文件上传模块 nginx_upload_module
1.编译安装nginx wget https://github.com/fdintino/nginx-upload-module/archive/refs/heads/master.zip PS:原先 ...
- allure安装成功后,执行未生成报告解决
在搜索了很多方法尝试后,执行依然没有生成测试报告,在尝试在pycharm里面修改配置解决了: file>setting>tools>Python integrated tools&g ...
- 树莓派4B安装Gogs
https://www.labno3.com/2021/01/28/how-to-install-gogs-on-the-raspberry-pi/ https://gogs.io/docs/inst ...
- Java流程控制之break、continue、goto
break.continue break在任何循环语句的主体部分,均可用break控制循环的流程.break用于强行退出循环,不执行循环中剩余的语句.(break语句也在switch语句中使用) co ...