IO流模块:经常看、经常用、经常忘;

一、基础简介

在IO流的网络模型中,以常见的「客户端-服务端」交互场景为例;

客户端与服务端进行通信「交互」,可能是同步或者异步,服务端进行「流」处理时,可能是阻塞或者非阻塞模式,当然也有自定义的业务流程需要执行,从处理逻辑看就是「读取数据-业务执行-应答写数据」的形式;

Java提供「三种」IO网络编程模型,即:「BIO同步阻塞」、「NIO同步非阻塞」、「AIO异步非阻塞」;

二、同步阻塞

1、模型图解

BIO即同步阻塞,服务端收到客户端的请求时,会启动一个线程处理,「交互」会阻塞直到整个流程结束;

这种模式如果在高并发且流程复杂耗时的场景下,客户端的请求响应会存在严重的性能问题,并且占用过多资源;

2、参考案例

服务端】启动ServerSocket接收客户端的请求,经过一系列逻辑之后,向客户端发送消息,注意这里线程的10秒休眠;

public class SocketServer01 {
public static void main(String[] args) throws Exception {
// 1、创建Socket服务端
ServerSocket serverSocket = new ServerSocket(8080);
// 2、方法阻塞等待,直到有客户端连接
Socket socket = serverSocket.accept();
// 3、输入流,输出流
InputStream inStream = socket.getInputStream();
OutputStream outStream = socket.getOutputStream();
// 4、数据接收和响应
int readLen = 0;
byte[] buf = new byte[1024];
if ((readLen=inStream.read(buf)) != -1){
// 接收数据
String readVar = new String(buf, 0, readLen) ;
System.out.println("readVar======="+readVar);
}
// 响应数据
Thread.sleep(10000);
outStream.write("sever-8080-write;".getBytes());
// 5、资源关闭
IoClose.ioClose(outStream,inStream,socket,serverSocket);
}
}

客户端】Socket连接,先向ServerSocket发送请求,再接收其响应,由于Server端模拟耗时,Client处于长时间阻塞状态;

public class SocketClient01 {
public static void main(String[] args) throws Exception {
// 1、创建Socket客户端
Socket socket = new Socket(InetAddress.getLocalHost(), 8080);
// 2、输入流,输出流
OutputStream outStream = socket.getOutputStream();
InputStream inStream = socket.getInputStream();
// 3、数据发送和响应接收
// 发送数据
outStream.write("client-hello".getBytes());
// 接收数据
int readLen = 0;
byte[] buf = new byte[1024];
if ((readLen=inStream.read(buf)) != -1){
String readVar = new String(buf, 0, readLen) ;
System.out.println("readVar======="+readVar);
}
// 4、资源关闭
IoClose.ioClose(inStream,outStream,socket);
}
}

三、同步非阻塞

1、模型图解

NIO即同步非阻塞,服务端可以实现一个线程,处理多个客户端请求连接,服务端的并发能力得到极大的提升;

这种模式下客户端的请求连接都会注册到Selector多路复用器上,多路复用器会进行轮询,对请求连接的IO流进行处理;

2、参考案例

服务端】单线程可以处理多个客户端请求,通过轮询多路复用器查看是否有IO请求;

public class SocketServer01 {
public static void main(String[] args) throws Exception {
try {
//启动服务开启监听
ServerSocketChannel socketChannel = ServerSocketChannel.open();
socketChannel.socket().bind(new InetSocketAddress("127.0.0.1", 8989));
// 设置非阻塞,接受客户端
socketChannel.configureBlocking(false);
// 打开多路复用器
Selector selector = Selector.open();
// 服务端Socket注册到多路复用器,指定兴趣事件
socketChannel.register(selector, SelectionKey.OP_ACCEPT);
// 多路复用器轮询
ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
while (selector.select() > 0){
Set<SelectionKey> selectionKeys = selector.selectedKeys();
Iterator<SelectionKey> selectionKeyIter = selectionKeys.iterator();
while (selectionKeyIter.hasNext()){
SelectionKey selectionKey = selectionKeyIter.next() ;
selectionKeyIter.remove();
if(selectionKey.isAcceptable()) {
// 接受新的连接
SocketChannel client = socketChannel.accept();
// 设置读非阻塞
client.configureBlocking(false);
// 注册到多路复用器
client.register(selector, SelectionKey.OP_READ);
} else if (selectionKey.isReadable()) {
// 通道可读
SocketChannel client = (SocketChannel) selectionKey.channel();
int len = client.read(buffer);
if (len > 0){
buffer.flip();
byte[] readArr = new byte[buffer.limit()];
buffer.get(readArr);
System.out.println(client.socket().getPort() + "端口数据:" + new String(readArr));
buffer.clear();
}
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}

客户端】每隔3秒持续的向通道内写数据,服务端通过轮询多路复用器,持续的读取数据;

public class SocketClient01 {
public static void main(String[] args) throws Exception {
try {
// 连接服务端
SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(new InetSocketAddress("127.0.0.1", 8989));
ByteBuffer writeBuffer = ByteBuffer.allocate(1024);
String conVar = "client-hello";
writeBuffer.put(conVar.getBytes());
writeBuffer.flip();
// 每隔3S发送一次数据
while (true) {
Thread.sleep(3000);
writeBuffer.rewind();
socketChannel.write(writeBuffer);
writeBuffer.clear();
}
} catch (Exception e) {
e.printStackTrace();
}
}
}

四、异步非阻塞

1、模型图解

AIO即异步非阻塞,对于通道内数据的「读」和「写」动作,都是采用异步的模式,对于性能的提升是巨大的;

这与常规的第三方对接模式很相似,本地服务在请求第三方服务时,请求过程耗时很大,会异步执行,第三方第一次回调,确认请求可以被执行;第二次回调则是推送处理结果,这种思想在处理复杂问题时,可以很大程度的提高性能,节省资源:

2、参考案例

服务端】各种「accept」、「read」、「write」动作是异步,通过Future来获取计算的结果;

public class SocketServer01 {
public static void main(String[] args) throws Exception {
// 启动服务开启监听
AsynchronousServerSocketChannel socketChannel = AsynchronousServerSocketChannel.open() ;
socketChannel.bind(new InetSocketAddress("127.0.0.1", 8989));
// 指定30秒内获取客户端连接,否则超时
Future<AsynchronousSocketChannel> acceptFuture = socketChannel.accept();
AsynchronousSocketChannel asyChannel = acceptFuture.get(30, TimeUnit.SECONDS); if (asyChannel != null && asyChannel.isOpen()){
// 读数据
ByteBuffer inBuffer = ByteBuffer.allocate(1024);
Future<Integer> readResult = asyChannel.read(inBuffer);
readResult.get();
System.out.println("read:"+new String(inBuffer.array())); // 写数据
inBuffer.flip();
Future<Integer> writeResult = asyChannel.write(ByteBuffer.wrap("server-hello".getBytes()));
writeResult.get();
} // 关闭资源
asyChannel.close();
}
}

客户端】相关「connect」、「read」、「write」方法调用是异步的,通过Future来获取计算的结果;

public class SocketClient01 {
public static void main(String[] args) throws Exception {
// 连接服务端
AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.open();
Future<Void> result = socketChannel.connect(new InetSocketAddress("127.0.0.1", 8989));
result.get(); // 写数据
String conVar = "client-hello";
ByteBuffer reqBuffer = ByteBuffer.wrap(conVar.getBytes());
Future<Integer> writeFuture = socketChannel.write(reqBuffer);
writeFuture.get(); // 读数据
ByteBuffer inBuffer = ByteBuffer.allocate(1024);
Future<Integer> readFuture = socketChannel.read(inBuffer);
readFuture.get();
System.out.println("read:"+new String(inBuffer.array())); // 关闭资源
socketChannel.close();
}
}

五、Reactor模型

1、模型图解

这部分内容,可以参考「Doug Lea的《IO》」文档,查看更多细节;

1.1 Reactor设计原理

Reactor模式基于事件驱动设计,也称为「反应器」模式或者「分发者」模式;服务端收到多个客户端请求后,会将请求分派给对应的线程处理;

Reactor:负责事件的监听和分发;Handler:负责处理事件,核心逻辑「read读」、「decode解码」、「compute业务计算」、「encode编码」、「send应答数据」;

1.2 单Reactor单线程

【1】Reactor线程通过select监听客户端的请求事件,收到事件后通过Dispatch进行分发;

【2】如果是建立连接请求事件,Acceptor通过「accept」方法获取连接,并创建一个Handler对象来处理后续业务;

【3】如果不是连接请求事件,则Reactor会将该事件交由当前连接的Handler来处理;

【4】在Handler中,会完成相应的业务流程;

这种模式将所有逻辑「连接、读写、业务」放在一个线程中处理,避免多线程的通信,资源竞争等问题,但是存在明显的并发和性能问题;

1.3 单Reactor多线程

【1】Reactor线程通过select监听客户端的请求事件,收到事件后通过Dispatch进行分发;

【2】如果是建立连接请求事件,Acceptor通过「accept」方法获取连接,并创建一个Handler对象来处理后续业务;

【3】如果不是连接请求事件,则Reactor会将该事件交由当前连接的Handler来处理;

【4】在Handler中,只负责事件响应不处理具体业务,将数据发送给Worker线程池来处理;

【5】Worker线程池会分配具体的线程来处理业务,最后把结果返回给Handler做响应;

这种模式将业务从Reactor单线程分离处理,可以让其更专注于事件的分发和调度,Handler使用多线程也充分的利用cpu的处理能力,导致逻辑变的更加复杂,Reactor单线程依旧存在高并发的性能问题;

1.4 主从Reactor多线程

【1】 MainReactor主线程通过select监听客户端的请求事件,收到事件后通过Dispatch进行分发;

【2】如果是建立连接请求事件,Acceptor通过「accept」方法获取连接,之后MainReactor将连接分配给SubReactor;

【3】如果不是连接请求事件,则MainReactor将连接分配给SubReactor,SubReactor调用当前连接的Handler来处理;

【4】在Handler中,只负责事件响应不处理具体业务,将数据发送给Worker线程池来处理;

【5】Worker线程池会分配具体的线程来处理业务,最后把结果返回给Handler做响应;

这种模式Reactor线程分工明确,MainReactor负责接收新的请求连接,SubReactor负责后续的交互业务,适应于高并发的处理场景,是Netty组件通信框架的所采用的模式;

2、参考案例

服务端】提供两个EventLoopGroup,「ParentGroup」主要是用来接收客户端的请求连接,真正的处理是转交给「ChildGroup」执行,即Reactor多线程模型;

@Slf4j
public class NettyServer {
public static void main(String[] args) {
// EventLoop组,处理事件和IO
EventLoopGroup parentGroup = new NioEventLoopGroup();
EventLoopGroup childGroup = new NioEventLoopGroup();
try {
// 服务端启动引导类
ServerBootstrap serverBootstrap = new ServerBootstrap();
serverBootstrap.group(parentGroup, childGroup)
.channel(NioServerSocketChannel.class).childHandler(new ServerChannelInit()); // 异步IO的结果
ChannelFuture channelFuture = serverBootstrap.bind(8989).sync();
channelFuture.channel().closeFuture().sync();
} catch (Exception e){
e.printStackTrace();
} finally {
parentGroup.shutdownGracefully();
childGroup.shutdownGracefully();
}
}
} class ServerChannelInit extends ChannelInitializer<SocketChannel> {
@Override
protected void initChannel(SocketChannel socketChannel) {
// 获取管道
ChannelPipeline pipeline = socketChannel.pipeline();
// 编码、解码器
pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8));
pipeline.addLast(new StringEncoder(CharsetUtil.UTF_8));
// 添加自定义的handler
pipeline.addLast("serverHandler", new ServerHandler());
}
} class ServerHandler extends ChannelInboundHandlerAdapter {
/**
* 通道读和写
*/
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("Server-Msg【"+msg+"】");
TimeUnit.MILLISECONDS.sleep(2000);
String nowTime = DateTime.now().toString(DatePattern.NORM_DATETIME_PATTERN) ;
ctx.channel().writeAndFlush("hello-client;time:" + nowTime);
ctx.fireChannelActive();
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx,Throwable cause) throws Exception {
cause.printStackTrace();
ctx.close();
}
}

客户端】通过Bootstrap类,与服务器建立连接,服务端通过ServerBootstrap启动服务,绑定在8989端口,然后服务端和客户端进行通信;

public class NettyClient {
public static void main(String[] args) {
// EventLoop处理事件和IO
NioEventLoopGroup eventLoopGroup = new NioEventLoopGroup();
try {
// 客户端通道引导
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(eventLoopGroup)
.channel(NioSocketChannel.class).handler(new ClientChannelInit()); // 异步IO的结果
ChannelFuture channelFuture = bootstrap.connect("localhost", 8989).sync();
channelFuture.channel().closeFuture().sync();
} catch (Exception e){
e.printStackTrace();
} finally {
eventLoopGroup.shutdownGracefully();
}
}
} class ClientChannelInit extends ChannelInitializer<SocketChannel> {
@Override
protected void initChannel(SocketChannel socketChannel) {
// 获取管道
ChannelPipeline pipeline = socketChannel.pipeline();
// 编码、解码器
pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8));
pipeline.addLast(new StringEncoder(CharsetUtil.UTF_8));
// 添加自定义的handler
pipeline.addLast("clientHandler", new ClientHandler());
}
} class ClientHandler extends ChannelInboundHandlerAdapter {
/**
* 通道读和写
*/
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("Client-Msg【"+msg+"】");
TimeUnit.MILLISECONDS.sleep(2000);
String nowTime = DateTime.now().toString(DatePattern.NORM_DATETIME_PATTERN) ;
ctx.channel().writeAndFlush("hello-server;time:" + nowTime);
}
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
ctx.channel().writeAndFlush("channel...active");
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx,Throwable cause) throws Exception {
cause.printStackTrace();
ctx.close();
}
}

六、参考源码

编程文档:
https://gitee.com/cicadasmile/butte-java-note 应用仓库:
https://gitee.com/cicadasmile/butte-flyer-parent

IO流中「线程」模型总结的更多相关文章

  1. 揭开Java IO流中的flush()的神秘面纱

    大家在使用Java IO流中OutputStream.PrintWriter --时,会经常用到它的flush()方法. 与在网络硬件中缓存一样,流还可以在软件中得到缓存,即直接在Java代码中缓存. ...

  2. 第54节:Java当中的IO流(中)

    Java当中的IO流(中) 删除目录 // 简书作者:达叔小生 import java.io.File; public class Demo{ public static void main(Stri ...

  3. io流中的装饰模式对理解io流的重要性

    为了说明 io流中的装饰者模式对理解io流的重要性,我想先简要介绍以下io的装饰模式. 装饰(decorator)你也可以翻译成修饰.比如:一个会精通化学数学的物理学家.在这个"物理学家&q ...

  4. Java当中的IO流(中)

    Java当中的IO流(中) 删除目录 import java.io.File; public class Demo{ public static void main(String[] args){ / ...

  5. 关于Java中面向对象章节、IO 流中的重点基础知识。

    一.面向对象的三大特征,以及作用. 答:面向对象的三大特征即,封装性.继承性.多态性. 其分别的作用为 : 封装作用:将数据封装起来,提高数据的安全性, 继承作用:提高代码的复用性,减少冗余代码. 多 ...

  6. Python后端日常操作之在Django中「强行」使用MVVM设计模式

    扫盲 首先带大家了解一下什么是MVVM模式: 什么是MVVM?MVVM是Model-View-ViewModel的缩写. MVVM是MVC的增强版,实质上和MVC没有本质区别,只是代码的位置变动而已 ...

  7. Java中IO流中所涉及到的各类方法介绍

    IO流之字节流 (1)IO用于在设备间进行数据传输的操作 (2)分类: A:流向 输入流 读取数据 输出流 写出数据 B:数据类型 字节流 字节输入流 字节输出流 字符流 字符输入流 字符输出流 注意 ...

  8. IO流中的Stream相关对象

    流无处不在,只要是关于到文件的输入.输出.更新等,关于IO流,项目中还是经常用到的,写log日志免不了要与其打交道,现在需要用到,就顺道好好回顾一下进行整理,首先是几个需要用到的类的说明,其实说简单点 ...

  9. Java中IO流中的装饰设计模式(BufferReader的原理)

    本文粗略的介绍下JavaIO的整体框架,重在解释BufferReader/BufferWriter的演变过程和原理(对应的设计模式) 一.JavaIO的简介 流按操作数据分为两种:字节流与字符流. 流 ...

  10. io流中比较特殊的流-java

    1.序列流(SequenceInputStream)整合个多个文件 A SequenceInputStream表示其他输入流的逻辑级联. 它从一个有序的输入流集合开始,从第一个读取到文件的结尾,然后从 ...

随机推荐

  1. nodejs 配置国内镜像

    npm config set registry https://registry.npm.taobao.org npm config set disturl https://npm.taobao.or ...

  2. Windows修改用户名

    修改用户名 右键此电脑>>管理>>本地用户和组>>用户,找到要修改的用户,重命名 修改用户home目录名 1.激活管理员账号 右键此电脑>>管理> ...

  3. mysql语句优化总结

    Sql语句优化和索引 1.Innerjoin和左连接,右连接,子查询 A.     inner join内连接也叫等值连接是,left/rightjoin是外连接. SELECT A.id,A.nam ...

  4. 【基础知识】C++算法基础(头文件配置、获取输入、输出)

    基础的头文件配置.输入输出 <iostream> 和<iostream.h>的区别:加.h是C中的做法,C++里一般不加.h,但相应的,要加using namspace std ...

  5. c# + appium 连接设备自动化

    //private static AndroidDriver<AppiumWebElement> _driver; //private static AppiumLocalService ...

  6. FastDFS安装(ARM同样支持)

    一.服务器部署规划 服务器IP 部署服务 192.168.*. tracker.storage.nginx 二.数据存储目录 应用 目录 fastdfs /usr/bin nginx /usr/loc ...

  7. vue+iview 表格行选中修改背景色

    <Table :columns="columns" :no-data-text="L('NoDatas')" border :data="lis ...

  8. Windows快捷键学习

    Ctrl组合 Ctrl+C 复制 Ctrl+X 剪切 Ctrl+V 粘贴 Ctrl+A 全选 Ctrl+Z 撤消 Ctrl+S 保存 Shift组合 Shift+Delete 永久删除 Shift+A ...

  9. scala apply方法和update方法

    示例代码1 class TestApplyClass { def apply(param: String): String = { println("apply method called, ...

  10. GitHub远程仓库与本地仓库链接问题

    git clone ...时,Failed to connect to 127.0.0.1 port 1080: Connection refused 步骤1------git查看: 查询动态代理 g ...