import torch
import torch.nn as nn
import numpy as np
torch.__version__
'1.0.0'

3.1 logistic回归实战

在这一章里面,我们将处理一下结构化数据,并使用logistic回归对结构化数据进行简单的分类。

3.1.1 logistic回归介绍

logistic回归是一种广义线性回归(generalized linear model),与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 wx + b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将wx+b作为因变量,即y =wx+b,而logistic回归则通过函数L将wx+b对应一个隐状态p,p =L(wx+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。

说的更通俗一点,就是logistic回归会在线性回归后再加一层logistic函数的调用。

logistic回归主要是进行二分类预测,我们在激活函数时候讲到过 Sigmod函数,Sigmod函数是最常见的logistic函数,因为Sigmod函数的输出的是是对于0~1之间的概率值,当概率大于0.5预测为1,小于0.5预测为0。

下面我们就来使用公开的数据来进行介绍

3.1.2 UCI German Credit 数据集

UCI German Credit是UCI的德国信用数据集,里面有原数据和数值化后的数据。

German Credit数据是根据个人的银行贷款信息和申请客户贷款逾期发生情况来预测贷款违约倾向的数据集,数据集包含24个维度的,1000条数据,

在这里我们直接使用处理好的数值化的数据,作为展示。

地址

3.2 代码实战

我们这里使用的 german.data-numeric是numpy处理好数值化数据,我们直接使用numpy的load方法读取即可

data=np.loadtxt("german.data-numeric")

数据读取完成后我们要对数据做一下归一化的处理

n,l=data.shape
for j in range(l-1):
meanVal=np.mean(data[:,j])
stdVal=np.std(data[:,j])
data[:,j]=(data[:,j]-meanVal)/stdVal

打乱数据

np.random.shuffle(data)

区分训练集和测试集,由于这里没有验证集,所以我们直接使用测试集的准确度作为评判好坏的标准

区分规则:900条用于训练,100条作为测试

german.data-numeric的格式为,前24列为24个维度,最后一个为要打的标签(0,1),所以我们将数据和标签一起区分出来

train_data=data[:900,:l-1]
train_lab=data[:900,l-1]-1
test_data=data[900:,:l-1]
test_lab=data[900:,l-1]-1

下面我们定义模型,模型很简单

class LR(nn.Module):
def __init__(self):
super(LR,self).__init__()
self.fc=nn.Linear(24,2) # 由于24个维度已经固定了,所以这里写24
def forward(self,x):
out=self.fc(x)
out=torch.sigmoid(out)
return out

测试集上的准确率

def test(pred,lab):
t=pred.max(-1)[1]==lab
return torch.mean(t.float())

下面就是对一些设置

net=LR()
criterion=nn.CrossEntropyLoss() # 使用CrossEntropyLoss损失
optm=torch.optim.Adam(net.parameters()) # Adam优化
epochs=1000 # 训练1000次

下面开始训练了

for i in range(epochs):
# 指定模型为训练模式,计算梯度
net.train()
# 输入值都需要转化成torch的Tensor
x=torch.from_numpy(train_data).float()
y=torch.from_numpy(train_lab).long()
y_hat=net(x)
loss=criterion(y_hat,y) # 计算损失
optm.zero_grad() # 前一步的损失清零
loss.backward() # 反向传播
optm.step() # 优化
if (i+1)%100 ==0 : # 这里我们每100次输出相关的信息
# 指定模型为计算模式
net.eval()
test_in=torch.from_numpy(test_data).float()
test_l=torch.from_numpy(test_lab).long()
test_out=net(test_in)
# 使用我们的测试函数计算准确率
accu=test(test_out,test_l)
print("Epoch:{},Loss:{:.4f},Accuracy:{:.2f}".format(i+1,loss.item(),accu))
Epoch:100,Loss:0.6313,Accuracy:0.76
Epoch:200,Loss:0.6065,Accuracy:0.79
Epoch:300,Loss:0.5909,Accuracy:0.80
Epoch:400,Loss:0.5801,Accuracy:0.81
Epoch:500,Loss:0.5720,Accuracy:0.82
Epoch:600,Loss:0.5657,Accuracy:0.81
Epoch:700,Loss:0.5606,Accuracy:0.81
Epoch:800,Loss:0.5563,Accuracy:0.81
Epoch:900,Loss:0.5527,Accuracy:0.81
Epoch:1000,Loss:0.5496,Accuracy:0.80

训练完成了,我们的准确度达到了80%

[Pytorch框架] 3.1 logistic回归实战的更多相关文章

  1. Logistic回归实战篇之预测病马死亡率

    利用sklearn.linear_model.LogisticRegression训练和测试算法. 示例代码: import numpy as np import matplotlib.pyplot ...

  2. 机器学习实战笔记5(logistic回归)

    1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  4. [机器学习实战-Logistic回归]使用Logistic回归预测各种实例

    目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...

  5. 机器学习实战 - 读书笔记(05) - Logistic回归

    解释 Logistic回归用于寻找最优化算法. 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大? 我们可以看 ...

  6. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  7. 05机器学习实战之Logistic 回归

    Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...

  8. 《机器学习实战》Logistic回归

    注释:Ng的视频有完整的推到步骤,不过理论和实践还是有很大差别的,代码实现还得完成 1.Logistic回归理论 http://www.cnblogs.com/wjy-lulu/p/7759515.h ...

  9. <机器学习实战>读书笔记--logistic回归

    1. 利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类. 2.sigmoid函数的分类 Sigmoid函数公式定义 3.梯度上升法    基本思想:要找 ...

  10. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

随机推荐

  1. nRF52832起来之后测试是上电还是休眠唤醒的方法

    void fu_state_machine_init(void) { /* NRF_POWER_RESETREAS_SREQ_MASK JLINK DOWNLOAD / POWER ON can ca ...

  2. VS中多字节字符集和UNICODE字符集的使用说明

    两者的核心区别: 1.在制作多国语言软件时,使用Unicode(UTF-16,16bits,两个字节).无特殊要求时,还是使用多字节字符集比较好. 2.如果要兼容C编程,只能使用多字节字符集.这里的兼 ...

  3. 2020.11.24 javaScript匿名函数的使用

    参考链接:http://www.voidcn.com/article/p-ngxxuegm-bmv.html 匿名函数: 函数表达式中创建的函数叫做匿名函数,也就是没有函数名的函数. 自执行函数: 创 ...

  4. 西电oj 244题单词排序

    题目描述: 定义一个二维字符数组str[10][20],行号表示单词序号,列号表示单词最大长度, 输入一个正整数N(N≤10),表示单词数,使用函数wd_sort()完成单词的排序,按字母顺序从小到大 ...

  5. ubuntu添加了id_rsa.pub*authorized_keys依然不能免密登录?

    cd .ssh chmod 600 authorized_keys 还是不行,看日志 tail -f /var/log/auth.log bad ownership or modes for dire ...

  6. autossh 使用

    Table of Contents 1. centos7下配置为服务 2. 命令式使用 2.1. 映射远程主机防火墙之后的端口到本机 2.2. 映射本机端口到远程主机 centos7下配置为服务 编辑 ...

  7. linux java 环境搭建

    java -version 是否安装 yum -y remove java-1.7.0-openjdk* yum -y install java-1.7.0-openjdk* vim /etc/pro ...

  8. ESP32开发环境搭建 IDF3.3.5+VScode

    1.  软件准备: ① ESP-IDF:包含ESP32 API和用于操作工具链的脚本. ②工具链msys32:用于编译ESP32应用程序. ③编辑工具Visual Studio Code 注意:工具链 ...

  9. GO语言学习笔记-测试篇 Study for Go ! Chapter ten- Test

    持续更新 Go 语言学习进度中 ...... GO语言学习笔记-类型篇 Study for Go! Chapter one - Type - slowlydance2me - 博客园 (cnblogs ...

  10. Linux & 标准C语言学习 <DAY8_1>

    一.进制转换     1.为什么要使用二进制.八进制.十六进制         因为目前的CPU只能识别高低两种电平,只能对二进制数据进行计算         二进制虽然能够直接被计算机识别,但是不方 ...