Pytorch中pad函数toch.nn.functional.pad()的用法
padding操作是给图像外围加像素点。
为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。
这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import torch.nn,functional as F import torch from PIL import Image im = Image. open ( "heibai.jpg" , 'r' ) X = torch.Tensor(np.asarray(im)) print ( "shape:" ,X.shape) dim = ( 10 , 10 , 10 , 10 ) X = F.pad(X,dim, "constant" ,value = 0 ) padX = X.data.numpy() padim = Image.fromarray(padX) padim = padim.convert( "RGB" ) #这里必须转为RGB不然会 padim.save( "padded.jpg" , "jpeg" ) padim.show() print ( "shape:" ,padX.shape) |
输出:
1
2
|
shape: torch.Size([ 256 , 256 ]) shape: ( 276 , 276 ) |
可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:
再举几个简单例子:
1
2
3
4
5
6
7
8
9
10
11
12
|
x = np.asarray([[[ 1 , 2 ],[ 1 , 2 ]]]) X = torch.Tensor(x) print (X.shape) pad_dims = ( 2 , 2 , 2 , 2 , 1 , 1 , ) X = F.pad(X,pad_dims, "constant" ) print (X.shape) print (X) |
输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
torch.Size([ 1 , 2 , 2 ]) torch.Size([ 3 , 6 , 6 ]) tensor([[[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]], [[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 1. , 2. , 0. , 0. ], [ 0. , 0. , 1. , 2. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]], [[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]]]) |
可以知若pad_dims为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2) pad是倒数第二个维度,第三个(1,1) pad是第一个维度。
再举一个四维度的,但是只pad三个维度:
1
2
3
4
5
6
7
8
9
10
11
12
|
x = np.asarray([[[[ 1 , 2 ],[ 1 , 2 ]]]]) X = torch.Tensor(x) #(1,2,2) print (X.shape) pad_dims = ( 2 , 2 , 2 , 2 , 1 , 1 , ) X = F.pad(X,pad_dims, "constant" ) #(1,1,12,12) print (X.shape) print (X) |
输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
torch.Size([ 1 , 1 , 2 , 2 ]) torch.Size([ 1 , 3 , 6 , 6 ]) tensor([[[[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]], [[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 1. , 2. , 0. , 0. ], [ 0. , 0. , 1. , 2. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]], [[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]]]]) |
再举一个四维度的,pad四个维度:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
x = np.asarray([[[[ 1 , 2 ],[ 1 , 2 ]]]]) X = torch.Tensor(x) #(1,2,2) print (X.shape) pad_dims = ( 2 , 2 , 2 , 2 , 1 , 1 , 2 , 2 ) X = F.pad(X,pad_dims, "constant" ) #(1,1,12,12) print (X.shape) print (X) |
输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
torch.Size([ 1 , 1 , 2 , 2 ]) torch.Size([ 5 , 3 , 6 , 6 ]) tensor([[[[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]], [[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]], [[ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. ]]], |
Pytorch中pad函数toch.nn.functional.pad()的用法的更多相关文章
- pytorch中文文档-torch.nn.init常用函数-待添加
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor ...
- ARTS-S pytorch中backward函数的gradient参数作用
导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...
- pytorch中文文档-torch.nn常用函数-待添加-明天继续
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...
- ARTS-S pytorch中Conv2d函数padding和stride含义
padding是输入数据最边缘补0的个数,默认是0,即不补0. stride是进行一次卷积后,特征图滑动几格,默认是1,即滑动一格.
- 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...
- PyTorch 中,nn 与 nn.functional 有什么区别?
作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...
- pytorch 中的重要模块化接口nn.Module
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...
- 『PyTorch』第十二弹_nn.Module和nn.functional
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Para ...
- PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...
随机推荐
- 如何在pyqt中自定义SwitchButton
前言 网上有很多 SwitchButton 的实现方式,大部分是通过重写 paintEvent() 来实现的,感觉灵活性不是很好.所以希望实现一个可以联合使用 qss 来更换样式的 SwitchBut ...
- CF1408G Clusterization Counting
首先,我们需要给一个连通块找到一个直观的合法判定解. 那么我们必须以一种直观的方式将边按照权值分开,这样才能直观地判定一个合法的组. 一个常见的方式是将边从小到大依次加入进来,那么在任意时刻图上存在的 ...
- UIKit坐标系
在UIKit中,坐标系的原点(0,0)在左上角,x值向右正向延伸,y值向下正向延伸
- k8s之Pod基础概念
1. 资源限制 Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象.一个Pod代表着集群中运行的一个进程.kubernetes中其他大多数组件都是围绕着Pod来 ...
- LAMP架构—源码编译安装 (爱情受过伤,为爱跳过鸭绿江)
LAMP架构--源码编译安装 1.LAMP架构概述 2.编译安装Apache httpd 服务 3.编译安装mysql 服务 4.编译安装PHP 解析服务 5.利用LAMP搭建论坛 1.LAMP架构概 ...
- Web集群调度器-Haproxy
Web集群调度器-Haproxy 目录 Web集群调度器-Haproxy 一.Web集群调度器 1.常用的Web集群调度器 2. Haproxy应用分析 3. Haproxy的主要特性 4. 常用集群 ...
- MLlib学习——基本统计
给定一个数据集,数据分析师一般会先观察一下数据集的基本情况,称之为汇总统计或者概要性统计.一般的概要性统计用于概括一系列观测值,包括位置或集中趋势(比如算术平均值.中位数.众数和四分位均值),展型(比 ...
- PostgreSQL删除数据库失败处理
PostgreSQL Drop DATABASE删除数据库失败,需要结束掉占用的连接 登录PostgreSQL后,执行: SELECT pg_terminate_backend(pg_stat_act ...
- Solution -「ABC 215H」Cabbage Master
\(\mathcal{Description}\) Link. 有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同.还有 \(m\) 个盒子,每个盒子可以被放 ...
- Error from server error dialing backend remote error tls internal error
# kubectl exec -it mysql-master-8cfb64ff9-ct4dx -n prophet -- /bin/bash Error from server: error dia ...