padding操作是给图像外围加像素点。

为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。

这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch.nn,functional as F
import torch
from PIL import Image
im=Image.open("heibai.jpg",'r')
 
X=torch.Tensor(np.asarray(im))
print("shape:",X.shape)
dim=(10,10,10,10)
X=F.pad(X,dim,"constant",value=0)
 
padX=X.data.numpy()
padim=Image.fromarray(padX)
padim=padim.convert("RGB")#这里必须转为RGB不然会
 
padim.save("padded.jpg","jpeg")
padim.show()
print("shape:",padX.shape)

输出:

1
2
shape: torch.Size([256, 256])
shape: (276, 276)

可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:

再举几个简单例子:

1
2
3
4
5
6
7
8
9
10
11
12
x=np.asarray([[[1,2],[1,2]]])
X=torch.Tensor(x)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
 
        )
X=F.pad(X,pad_dims,"constant")
print(X.shape)
print(X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([1, 2, 2])
torch.Size([3, 6, 6])
tensor([[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]])

可以知若pad_dims为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2) pad是倒数第二个维度,第三个(1,1) pad是第一个维度。

再举一个四维度的,但是只pad三个维度:

1
2
3
4
5
6
7
8
9
10
11
12
x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
         )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([1, 1, 2, 2])
torch.Size([1, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]]])

再举一个四维度的,pad四个维度:

1
2
3
4
5
6
7
8
9
10
11
12
13
x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
          2, 2
        )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
torch.Size([1, 1, 2, 2])
torch.Size([5, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]],

Pytorch中pad函数toch.nn.functional.pad()的用法的更多相关文章

  1. pytorch中文文档-torch.nn.init常用函数-待添加

    参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor ...

  2. ARTS-S pytorch中backward函数的gradient参数作用

    导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...

  3. pytorch中文文档-torch.nn常用函数-待添加-明天继续

    https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...

  4. ARTS-S pytorch中Conv2d函数padding和stride含义

    padding是输入数据最边缘补0的个数,默认是0,即不补0. stride是进行一次卷积后,特征图滑动几格,默认是1,即滑动一格.

  5. 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数

    分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...

  6. PyTorch 中,nn 与 nn.functional 有什么区别?

    作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...

  7. pytorch 中的重要模块化接口nn.Module

    torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...

  8. 『PyTorch』第十二弹_nn.Module和nn.functional

    大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Para ...

  9. PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx

    PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...

随机推荐

  1. SpringBoot使用IDEA设置的外部Tomcat启动

    前言 使用springboot内嵌的tomcat启动是没问题,但是工程是要放到服务器上的tomcat的,所以springboot内嵌的能够启动,但不代表服务器的tomcat能启动起来,我就遇到了这个问 ...

  2. 深入了解Element Form表单动态验证问题 转载

    随风丶逆风 2020-04-03 15:36:41  2208  收藏 3 分类专栏: Vue 随笔 文章标签: 动态验证 el-form elementUI 表单验证 版权 在上一篇<vue ...

  3. 关于LVS的问题总结

    关于LVS的问题总结 目录 关于LVS的问题总结 1. LVS工作模式及区别 2. LVS调度算法 3. LVS调度器你的常用算法(均衡策略) (1)固定调度算法:rr.wrr.dh.sh (2)动态 ...

  4. 微信小程序音频播放 InnerAudioContext 的用法

    今天项目上涉及到了微信小程序播放音频功能,所以今天跟着一些教程做了个简单的播放器 1.实现思路 刚开始想着有没有现成的组件可以直接用,找到了微信的媒体组件 audio,奈何看着 1.6.0版本开始,该 ...

  5. 如何快速为团队打造自己的组件库(下)—— 基于 element-ui 为团队打造自己的组件库

    文章已收录到 github,欢迎 Watch 和 Star. 简介 在了解 Element 源码架构 的基础上,接下来我们基于 element-ui 为团队打造自己的组件库. 主题配置 基础组件库在 ...

  6. Java中ArrayList边遍历边修改

    用for-each 边遍历ArrayList 边修改时: public static void main(String[] args) { ArrayList<String> list = ...

  7. shell脚本命令

    http://man.linuxde.net/shell-script   从键盘或文件中获取标准输入:read命令 文件的描述符和重定向 数组.关联数组和别名的使用 函数的定义.执行.传参和递归函数 ...

  8. 3、架构--cp、scp、rsync、实时监控与同步

    笔记 1.晨考 1.VPN的搭建步骤 2.vpn中的iptables是什么作用? 网络转发 2.昨日问题 1.yum源问题 2.VPN链接正常,但是没办法通过172 3.VPN链接时,出现了DNS错误 ...

  9. Solution -「LOCAL」逃生

    \(\mathcal{Description}\)   有 \(n\) 个人掉进了深度为 \(h\) 的坑里,第 \(i\) 个人的肩高为 \(a_i\),臂长为 \(b_i\).设当前坑里人的集合为 ...

  10. Solution -「ARC 104D」Multiset Mean

    \(\mathcal{Description}\)   Link.   读题时间≈想题时间,草.(   给定 \(N,K,M\),对于每个 \(x\in[1,N]\) 的整数 \(x\),统计多重集 ...