#include<cstdio>
#include<map>
using namespace std;
typedef long long LL; const int N = 1e6;
LL x , a , b , c , m , f[N + 10] , p;
int n , len , vis[N + 10]; inline LL fpow(LL x , int y , LL p)
{
LL res = 1;
while (y)
{
if (y & 1) res = res * x % p;
x = x * x % p , y = y >> 1;
}
return res;
} int main()
{
// freopen("数列.in" , "r" , stdin);
scanf("%lld%lld%lld%lld%d%lld" , &x , &a , &b , &c , &n , &m);
x %= m;
if (n < 1000000)
{
for(register int i = 1; i <= n; i++) x = (a * x % m * x % m + b * x % m + c) % m;
printf("%lld" , x);
return 0;
}
if (m <= 1000000)
for(register int i = 1; i <= m + 5; i++)
{
x = (a * x % m * x % m + b * x % m + c) % m;
f[i] = x;
if (i == n)
{
printf("%lld" , x);
return 0;
}
if (vis[x])
{
len = i - vis[x] , n = (n - i) % len;
printf("%lld" , f[vis[x] + n]);
return 0;
}
else vis[x] = i;
}
c = b / (a << 1);
p = fpow(x + c , fpow(2LL , n , m - 1) , m);
a = fpow(a , fpow(2LL , n , m - 1) - 1 , m);
x = (p * a % m + m - c) % m;
printf("%lld" , x);
}
/*
b = 2ak
4ac = b*b - 2b
4ac = 4*a*a*k*k-4*a*k
c = a*k*k-k
f(x) = a*x*x+b*x+c
f(x) = a*x*x+2*x*a*k+a*k*k-k
f(x) = a(x+k)^2-k
p = x+k
p(i) = a*p(i-1)^2
p(0) = x(0)+k
p(1) = a*p(0)^2
p(2) = a*a*a*p(0)^4
p(3) = a^7*p(1)^8
p(n) = a^(2^n-1)*p(0)^(2^n)
ans = p(n)-k;
a^(m-1) % m = 1 (a,m) = 1
*/

【雅礼联考DAY01】数列的更多相关文章

  1. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)总结

    考的还ok,暴力分很多,但有点意外的错误. 第一题找规律的题目,推了好久.100分 第二题dp,没想到. 第三题树状数组.比赛上打了个分段,准备拿60分,因为时间不够,没有对拍,其中有分段的20分莫名 ...

  2. 【NOIP2016提高A组模拟8.19】(雅礼联考day2)总结

    第一题又有gcd,又有xor,本来想直接弃疗,不过后来想到了个水法: 当两个相邻的数满足条件时,那么他们的倍数也可能满足条件.然后没打,只打了个暴力. 正解就是各种结论,各种定理搞搞. 第二题,想都不 ...

  3. 【NOIP2016提高A组模拟8.19】(雅礼联考day2)公约数

    题目 给定一个正整数,在[1,n]的范围内,求出有多少个无序数对(a,b)满足gcd(a,b)=a xor b. 分析 显然a=b是一定不满足, 我们设\(a>b\), 易得gcd(a,b)&l ...

  4. 【NOIP2016提高A组模拟8.19】(雅礼联考day2)树上路径

    题目 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和). 分析 点分治,设当前为x的,求在以x为根的子树中,经过x的路径(包括起点或 ...

  5. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Binary

    题目 分析 首先每个数对\(2^i\)取模.也就是把每个数的第i位以后删去. 把它们放进树状数组里面. 那么当查询操作, 答案就位于区间\([2^i-x,2^{i-1}-1-x]\)中,直接查询就可以 ...

  6. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Value

    题目 分析 易证,最优的答案一定是按\(w_i\)从小到大放. 我们考虑dp, 先将w从小到大排个序,再设\(f_{i,j}\)表示当前做到第i个物品,已选择了j个物品的最大值.转移就是\[f_{i, ...

  7. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Matrix

    题目 分析 假设,我们从\(F_{i,2}\)出发,那么对\(F_{n,n}\)的贡献就是\(某个系数乘以a^{n-i}b^{n-1}r_i\): 同理,如果从\(F_{2,i}\)出发,那么对\(F ...

  8. [JZOJ4759] 【雅礼联考GDOI2017模拟9.4】石子游戏

    题目 描述 题目大意 在一棵树上,每个节点都有些石子. 每次将mmm颗石子往上移,移到根节点就不能移了. 双方轮流操作,问先手声还是后手胜. 有三种操作: 1. 询问以某个节点为根的答案. 2. 改变 ...

  9. 雅礼集训1-9day爆零记

    雅礼集训1-9day爆零记 先膜一下虐爆我的JEFF巨佬 Day0 我也不知道我要去干嘛,就不想搞文化科 (文化太辣鸡了.jpg) 听李总说可以去看(羡慕)各路大佬谈笑风声,我就报一个名吧,没想到还真 ...

  10. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

随机推荐

  1. vivo大数据日志采集Agent设计实践

    作者:vivo 互联网存储技术团队- Qiu Sidi 在企业大数据体系建设过程中,数据采集是其中的首要环节.然而,当前行业内的相关开源数据采集组件,并无法满足企业大规模数据采集的需求与有效的数据采集 ...

  2. 上传文件到阿里云 oss,前端 browser.js 笔记

    Web端常见的上传方法是用户在浏览器或App端上传文件到应用服务器,应用服务器再把文件上传到OSS. 和数据直传到OSS相比,有以下缺点 上传慢:用户数据需先上传到应用服务器,之后再上传到OSS 费用 ...

  3. 【Java】【数据库】索引为何使查询变得更快?--B+树

    排序数据的二分查找 二分查找的时间复杂度是\(O(log_2n)\),明显快于暴力搜索. 索引 建立索引的数据,就是通过事先排好顺序,在查找时可以应用二分查找来提高查询效率. 所以索引应该尽可能建立在 ...

  4. 02.JavaScript学习笔记1

    1.强制类型转换 当使用加号进行运算时,会将数字强制转换为字符串,然后再进行运算. const year = '1991'; console.log(year + 18); console.log(t ...

  5. 基于人人框架--本地项目部署流程(前后端+IIS上传功能)

    基于人人框架--本地项目部署流程(前后端+IIS上传功能) 一.环境要求 JAVA环境 JDK:1.8 IIS 本地电脑必须要有IIS服务 MySQL 数据库采用MySQL数据库,安装版本为 5.7. ...

  6. 【JVM故障问题排查心得】「内存诊断系列」Docker容器经常被kill掉,k8s中该节点的pod也被驱赶,怎么分析?

    背景介绍 最近的docker容器经常被kill掉,k8s中该节点的pod也被驱赶. 我有一个在主机中运行的Docker容器(也有在同一主机中运行的其他容器).该Docker容器中的应用程序将会计算数据 ...

  7. day03-功能实现02

    家居网购项目实现02 5.功能04-会员登录 5.1需求分析/图解 需求如图: 输入用户名.密码后提交 判断该用户是否存在 如果存在,显示登录成功页面 否则返回登录页面,要求重新登录 要求改进登录密码 ...

  8. django.core.exceptions.ImproperlyConfigured: Application labels aren't unique, duplicates: rest_framework_swagger

    在启动服务时报django.core.exceptions.ImproperlyConfigured: Application labels aren't unique, duplicates: re ...

  9. [深度学习] ubuntu18.04配置深度学习环境笔记

    最近装过很多ubuntu18.04系统的nvidia驱动,cuda10.2,cudnn7.6.5,发现每次都会出现一些小问题.总结了具体步骤,做个记录.主要分为三个步骤:驱动安装,cuda安装,cud ...

  10. [OpenCV实战]9 使用OpenCV寻找平面图形的质心

    目录 1 名词解释 2 在OpenCV中查找Blob质心的步骤 3 图像多个blob下的质心获取 4 参考 在中学,我们学习了几何的中各种平面图形.找到标准平面图形的中心(几何中心)比较容易,如圆形, ...