今天本来正在工位上写着一段很普通的业务代码,将其简化后大致如下:

function App(props: any) {		// 父组件
const subRef = useRef<any>(null)
const [forceUpdate, setForceUpdate] = useState<number>(0) const callRef = () => {
subRef.current.sayName() // 调用子组件的方法
} const refreshApp = () => { // 模拟父组件刷新的方法
setForceUpdate(forceUpdate + 1)
} return <div>
<SubCmp1 refreshApp={refreshApp} callRef={callRef} />
<SubCmp2 ref={subRef} />
</div>
} class SubCmp1 extends React.Component<any, any> { // 子组件1
constructor(props: any) {
super(props)
this.state = {
count: 0
}
} add = () => {
this.props.refreshApp() // 会导致父组件重渲染的操作 // 修改自身数据,并在回调函数中调用外部方法
this.setState({ count: this.state.count + 1 }, () => {
this.props.callRef()
})
} render() {
return <div>
<button onClick={this.add}>Add</button>
<span>{this.state.count}</span>
</div>
}
} const SubCmp2 = forwardRef((props: any, ref) => { // 子组件2 useImperativeHandle(ref, () => {
return {
sayName: () => {
console.log('SubCmp2')
}
}
}) return <div>SubCmp2</div>
})

代码结构其实非常简单,一个父组件包含有两个子组件。其中的组件2因为要在父组件中调用它的内部方法,所以用forwardRef包裹,并通过useImperativeHandle向外暴露方法。组件1则是通过props传递了两个父组件的方法,一个是用于间接地访问组件2中的方法,另一个则是可能导致父组件重渲染的方法(当然这种结构的安排明显是不太合理的,但由于项目历史包袱的原因咱就先不考虑这个问题了\doge)。

然后当我满心欢喜地Click组件时,一片红色的Error映入眼帘:

在几个关键位置加上打印:

const callRef = (str) => {
console.log(str, ' --- ', subRef.current)
} add = () => {
this.props.callRef('打印1') this.props.refreshApp()
this.setState({ count: this.state.count + 1 }, () => {
this.props.callRef('打印2') setTimeout(() => {
this.props.callRef('打印3')
}, 0)
})
}

结果:

有点amazing啊。在调用前ref.current是有正确值的,在setState的回调中ref.current变为null了,而在setState的回调中加上一个异步后,立即又变为正确值了。

要debug这个问题,一个非常关键的位置就在setState的回调函数。熟悉React内部渲染流程的同学,应该知道,在React触发更新之后的commit阶段,也就是在React更新完DOM之后,针对fiber节点的类型分别做不同的处理(位于commitLifeCycles方法)。例如class组件中,会同步地执行setState的回调;函数组件的话,则会同步地执行useLayoutEffect的回调函数。

带着这个前提知识的情况下,我们给useImperativeHandle加个断点。因为对于其他常见的hookclass组件生命周期在React更新渲染中的执行时机都是比较熟悉的,唯独这个useImperativeHandle内部机制还不太了解,然我们看看代码在进入该断点时的执行栈是怎样的:

首先,在左侧的callstack面板里看到了commitLifeCycles方法,说明 useImperativeHandle这个hook也是在更新渲染后的commit同步执行的。接着我们进去impreativeHandleEffect,也就是useImperativeHandle回调函数的上一层:

方法体里先判断父组件传入的ref的类型。如果是一个函数,则将执行useImperativeHandle回调函数执行后的对象传入去并执行;否则将对象赋值到ref.current上。但这两种情况都会返回一个清理副作用的函数,而这个清理函数的任务就是——把我的ref.current给置为null !?

抓到这个最重要的线索了,赶紧给这个清理函数打个断点,然后再触发一次更新看下:

这个清理函数是在commitMutationEffects时期执行的;commitMutationEffects里做的主要工作就是就是fiber节点的类型执行需要操作的副作用(位于commitWork方法),例如对DOM的增删改,以及我们熟知的useLayoutEffect的清理函数也是在这时候完成的。

到目前为止,引发报错问题的整条链路就清晰了:

在触发更新后,在commit阶段的commitMutationEffects部分会先执行useImperativeHandle的清理函数,自这之后ref.current就被置为了null

接着才到commitLayoutEffects,该部分会执行setStateuseLayoutEffectuseImpreativeHandle这些方法的回调。

依据React以深度优先遍历方式生成fiber树且边生成边收集副作用的规则,子组件1中setState回调会比useImpreativeHandle的回调先执行,那么此时ref.current仍然还为null

从源码入手探究一个因useImperativeHandle引起的Bug的更多相关文章

  1. 从源码入手,一文带你读懂Spring AOP面向切面编程

    之前<零基础带你看Spring源码--IOC控制反转>详细讲了Spring容器的初始化和加载的原理,后面<你真的完全了解Java动态代理吗?看这篇就够了>介绍了下JDK的动态代 ...

  2. [源码分析] 从源码入手看 Flink Watermark 之传播过程

    [源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...

  3. 使用CEF(三)— 从CEF官方Demo源码入手解析CEF架构与CefApp、CefClient对象

    在上文<使用CEF(2)- 基于VS2019编写一个简单CEF样例>中,我们介绍了如何编写一个CEF的样例,在文章中提供了一些代码清单,在这些代码清单中提到了一些CEF的定义的类,例如Ce ...

  4. JVM源码分析之一个Java进程究竟能创建多少线程

    JVM源码分析之一个Java进程究竟能创建多少线程 原创: 寒泉子 你假笨 2016-12-06 概述 虽然这篇文章的标题打着JVM源码分析的旗号,不过本文不仅仅从JVM源码角度来分析,更多的来自于L ...

  5. 自己根据java的LinkedList源码编写的一个简单的LinkedList实现

    自己实现了一个简单的LinkedList /** * Create by andy on 2018-07-03 11:44 * 根据 {@link java.util.LinkedList}源码 写了 ...

  6. nginx源码层面探究request_time、upstream_response_time、upstream_connect_time与upstream_header_time指标具体含义

    背景概述 最近计划着重分析一下线上各api的HTTP响应耗时情况,检查是否有接口平均耗时.99分位耗时等相关指标过大的情况,了解到nginx统计请求耗时有四个指标:request_time.upstr ...

  7. [ASP.NET]分析MVC5源码,并实现一个ASP.MVC

    本节内容不是MVC入门教程,主要讲MVC原理,实现一个和ASP.NET MVC类似基本原理的项目. MVC原理是依赖于ASP.NET管道事件基础之上的.对于这块,可阅读上节内容 [ASP.NET]谈谈 ...

  8. Fresco源码解析 - 创建一个ImagePipeline(一)

    在Fresco源码解析 - 初始化过程分析章节中, 我们分析了Fresco的初始化过程,两个initialize方法中都用到了 ImagePipelineFactory类. ImagePipeline ...

  9. 关于FastDFS Java客户端源码中的一个不太明白的地方

    下面代码是package org.csource.fastdfs下TrackerGroup.java文件中靠近结束的一段代码,我下载的这个源码的版本是1.24. /** * return connec ...

随机推荐

  1. DOM及DOM相关操作

    DOM 概述: DOM 全称(document object model)文档对象模型(文档指定为对应html文档),对应的DOM就是操作HTML文档的(增删改查) DOM结构 document 文档 ...

  2. 论文解读(PairNorm)《PairNorm: Tackling Oversmoothing in GNNs》

    论文信息 论文标题:PairNorm: Tackling Oversmoothing in GNNs论文作者:Lingxiao Zhao, Leman Akoglu论文来源:2020,ICLR论文地址 ...

  3. 快速创建springboot项目,并进行增删改

    创建普通maven项目,pom依赖如下 <parent> <artifactId>spring-boot-starter-parent</artifactId> & ...

  4. 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network

    论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...

  5. 【Java】学习路径49-练习:使用两个不同的线程类实现买票系统

    练习:使用两个不同的线程类实现买票系统 请创建两个不同的线程类.一个测试类以及一个票的管理类. 其中票的管理类用于储存票的数量.两个线程类看作不同的买票方式. 步骤: 1.创建所需的类 App售票线程 ...

  6. Postman中的Pre-request Scrip详解

    Postman中的Pre-request Scrip详解 一.Pre-request Scrip的简介 1.Pre-request Script是在请求发送之前需要执行的代码片段: 2.请求参数中包含 ...

  7. KingbaseES R6 集群repmgr.conf参数'recovery'测试案例(一)

    KingbaseES R6集群repmgr.conf参数'recovery'测试案例(一) 案例说明: 在KingbaseES R6集群中,主库节点出现宕机(如重启或关机),会产生主备切换,但是当主库 ...

  8. KingbaseES 数据库大小写敏感特性

    针对不同版本.是否启用大小写敏感,特征汇总如下:

  9. 优化器Optimal

    未完成!!!!!! 神经网络的训练主要是通过优化损失函数来更新参数,而面对庞大数量的参数的更新,优化函数的设计就显得尤为重要,下面介绍一下几种常用的优化器及其演变过程: [先说明一下要用到符号的含义] ...

  10. std:move() 作用 和 移动语义后 右值行为,unique_ptr的"移动"操作问题

    unique_ptr 不能进行赋值操作,但是可以有返回unique_ptr的函数,由此产生的问题: 结论1:std:move() 只是将一个实参强行转换为右值引用. 我们知道对象初始化时有 构造函数, ...