引言

思维题。

这个做法跑得飞快,还不用 dp,也不是爆搜!

复杂度(可能)为 \(O(s^2t)\) 或 \(O(s^2)\),实际效率也是飞快。

不过这题我直接提交答案了。

思路

考虑 \(A=mn,B=m+n\)。

假设 \(A\) 先手。

从 \(A\) 中枚举分解方案,假设有 \((m_1,n_1)(m_2,n_2)\cdots(m_k,n_k)\) 这些合法。

如 \(k>1\),会说不知道,称这样的 \(A\) 构成集合 \(A_{>0}\);否则知道,称这样的 \(A\) 构成集合 \(A_0\)。

对 \(B\) 分解,其有 \((s,B-s)(s+1,B-s-1)\cdots(\lfloor B/2\rfloor,\lceil B/2\rceil)\) 这些合法。

从中选出相乘为 \(A_0\) 中元素的数对,若唯一,记这样的 \(B\) 构成 \(B_0'\),说明知道;若多于 \(1\) 个,则无法计算;若不存在,若解集大小为 \(1\),则构成集合 \(B_0\),说明知道;若解集大小大于 \(1\),构成集合 \(B_{>0}\)。

对 \(B_0\) 集合类似地反推 \(A_1'\),对 \(B_{>0}\) 反推出 \(A_1,A_{>1}\)。

刚才的描述不够清晰,让我们形式化地说:

\[\def\defeq{\mathop{=}\limits^{\operatorname{def}}}
\begin{array}{|l|}
\hline
X(A)\defeq\{(m,n)|s\le m\le n,mn=A\}\\
Y(B)\defeq\{(m,n)|s\le m\le n,m+n=B\}\\
A_{\ge0}\defeq\{A|X(A)\neq\varnothing\}\\
B_{\ge0}\defeq\{B|Y(B)\neq\varnothing\}\\\hdashline
A_0\defeq\{A|A\in A_{\ge0},|X(A)|=1\}\\
A_{\ge1}\defeq A_{\ge0}-A_0\\\hdashline
X_0\defeq\cup_{A\in A_0}X(A)\\
B_0'\defeq\{B|B\in B_{\ge0},|Y(B)\cap X_0|=1\}\\
B_0\defeq\{B|B\in B_{\ge0},|Y(B)-X_0|=1\}\\
B_{\ge1}\defeq\{B|B\in B_{\ge0},|Y(B)-X_0|>1\}\\\hdashline
Y_0\defeq\cup_{B\in B_0}Y(B)\\
A_1'\defeq\{A|A\in A_{\ge1},|X(A)\cap Y_0|=1\}\\
A_1\defeq\{A|A\in A_{\ge1},|X(A)-Y_0|=1\}\\
A_{\ge2}\defeq\{A|A\in A_{\ge1},|X(A)-Y_0|>1\}\\\hdashline
X_1\defeq\cup_{A\in A_1}X(A)\\
B_1'\defeq\{B|B\in B_{\ge1},|Y(B)\cap X_1|=1\}\\
B_1\defeq\{B|B\in B_{\ge1},|Y(B)-X_1|=1\}\\
B_{\ge2}\defeq\{B|B\in B_{\ge1},|Y(B)-X_1|>1\}\\\hdashline
\cdots\\
\hline
\end{array}
\]

查询 \(t=0\),就是查询 \(A_0/B_0'\);查询 \(t=1\),就是查询 \(B_0/A_1'\);查询 \(t=2\),就是查询 \(A_1/B_1'\);等等。

\(A_{\ge1}\) 就是 \(A\) 报了一次不知道后的可能集合;\(B_{\ge1}\) 就是 \(B\) 报了一次不知道后的可能集合;\(A_{\ge2}\) 就是 \(A\) 报了两次不知道后的可能集合;等等。

B 先手同理。

试看看!

你已经学会基本的思考方法了,让我们来做一些小练习吧!

实战一些数据。

测试点 \(2\)

1 Alice 2

对,先 \(2\) 再 \(1\)。

主要是因为啊,这个东西嘛,和我们刚刚说的一样,是 A 先手,不用重新转换视角。

对这种东西,我们可以考虑对下面的东西列表格:

\[f(A)=\max\{k|A\in A_{\ge k}\}
\]
\[g(B)=\max\{k|B\in B_{\ge k}\}
\]

这样的手算会简单一点。(?)

\[\begin{matrix}
\hline
n&1&2&3&4&5&6&7
\\\hline\hline
f(n)&0&0&0&1&0&\ge1&0
\\\hline
g(n)&-1&0&0&0&\ge1&\ge1&\ge1
\\\hline
\end{matrix}
\]

因此 \(m=1,n=4\) 最优。

测试点 \(1\)

1 Bob 2

反过来枚举顺序,即得如下。

\[\begin{matrix}
\hline
n&1&2&3&4&5&6&7
\\\hline\hline
f(n)&0&0&0&\ge1&0&\ge1&0
\\\hline
g(n)&-1&0&0&1&\ge1&\ge1&\ge1
\\\hline
\end{matrix}
\]

\(m=n=2\) 最优。

测试点 \(3\)

2 Bob 2

类似,但是要手枚更多项。

\[\begin{matrix}
\hline
n&1&2&3&4&5&6&7&8&9&10&11&12
\\\hline\hline
f(n)&-1&-1&-1&0&-1&0&-1&0&0&0&-1&\ge1
\\\hline
g(n)&-1&-1&-1&0&0&1&1&\ge1&\ge1&&&
\\\hline
\end{matrix}
\]

\(m=3,n=4\) 最优。

注意不是 \(2,4\)——\(8\) 已经置 \(0\) 了!

测试点 \(4\)

11 Bob 2

已经不能指望手算了——刚刚的那组数据都很困难。

考虑代码实现以上过程。

\(t=2\) 时,\(B=m+n\) 在 \(4s\) 内较有可能,考虑仅计算 \(mn\le4s^2+100,m+n\le5s+100\) 的部分解集。

首先提取范围内的 \(A_{\ge0}\) 与 \(B_{\ge0}\),并算出对应的 \(X(A),Y(B)\)。

然后枚举 \(B_0\),得到 \(B_{\ge1}\)。

枚举 \(A_0\),得到 \(A_{\ge1}\)。

枚举 \(B_1\),进而得解。

成功地,给出了解 \(n=15,m=16\)。

测试点 \(5\)

18 Bob 2

这个给出的解为 \(n=21,m=24\),交了一下是错的,是不是我们给的界不够大?

不是,其实是因为,我们没有再校验 \(A_1'\)!

在从 \(B_1\) 推断 \(A_1'\) 后,我们还要校验其合法性:\(A_1'\) 不一定可以被唯一决策!

验证完后即得正解 \(n=20,m=27\)。

测试点 \(6\sim10\)

28 Bob 2
28 Alice 2
57 Alice 2
111 Alice 2
200 Alice 2

把从 \(A\) 出发的情况实践一下 容易依次得解。

这样我们就解决了 \(t=2\) 的部分(测试点 \(1\sim10\)),答案依次为

2 2
1 4
3 4
15 16
20 27
35 40
28 45
65 72
114 140
200 242

可以拿到 \(\rm40pts\)。

以下是暴力代码。

int main()
{
#ifdef MYEE
freopen("QAQ.in","r",stdin);
// freopen("QAQ.out","w",stdout);
#endif
static chr Op[50];
uint s,t;scanf("%u%s%u",&s,Op,&t);
if(t!=2)exit(0);
static std::vector<std::pair<uint,uint> >X[1000005],Y[1000005];
uint Lim1=4*s*s,Lim2=5*s;
for(uint m=s;m<=Lim2;m++)for(uint n=m;n*m<=Lim1&&n+m<=Lim2;n++){
X[n*m].push_back({m,n});
Y[n+m].push_back({m,n});
}
static bol Xi[1000005],Yi[1000005];
std::vector<uint>Ag,Bg;
for(uint i=1;i<=Lim1;i++)if(X[i].size())Ag.push_back(i),Xi[i]=1;
for(uint i=1;i<=Lim2;i++)if(Y[i].size())Bg.push_back(i),Yi[i]=1;
if(Op[0]=='B'){
std::vector<uint>User;
User.clear();
for(auto b:Bg){
uint c=0;
for(auto g:Y[b])c+=Xi[g.first*g.second];
if(c>=2)User.push_back(b);
else Yi[b]=0;
}
Bg=User,User.clear();
for(auto a:Ag){
uint c=0;
for(auto g:X[a])c+=Yi[g.first+g.second];
if(c>=2)User.push_back(a);
else Xi[a]=0;
}
Ag=User,User.clear();
for(auto b:Bg){
uint c=0;
for(auto g:Y[b])c+=Xi[g.first*g.second];
if(c==1)User.push_back(b);
else Yi[b]=0;
}
for(auto b:User)for(auto g:Y[b])if(Xi[g.first*g.second]){
uint c=0;
for(auto p:X[g.first*g.second])c+=Yi[p.first+p.second];
if(c==1){
printf("%u %u\n",g.first,g.second);
return 0;
}
}
}
else{
std::vector<uint>User;
User.clear();
for(auto a:Ag){
uint c=0;
for(auto g:X[a])c+=Yi[g.first+g.second];
if(c>=2)User.push_back(a);
else Xi[a]=0;
}
Ag=User;
User.clear();
for(auto b:Bg){
uint c=0;
for(auto g:Y[b])c+=Xi[g.first*g.second];
if(c>=2)User.push_back(b);
else Yi[b]=0;
}
Bg=User,User.clear();
for(auto a:Ag){
uint c=0;
for(auto g:X[a])c+=Yi[g.first+g.second];
if(c==1)User.push_back(a);
else Xi[a]=0;
}
uint x=-1,y=-1;
for(auto a:User)for(auto g:X[a])if(Yi[g.first+g.second]){
uint c=0;
for(auto p:Y[g.first+g.second])c+=Xi[p.first*p.second];
if(c==1){
if(g.first+g.second<x+y||(g.first+g.second==x+y&&g.first<x))
x=g.first,y=g.second;
}
}
printf("%u %u\n",x,y);
}
return 0;
}

测试点 \(11\sim25\)

看下面 \(5\) 组数据(\(11\sim15\))。

1 Bob 3
69 Alice 3
147 Alice 4
88 Alice 5
109 Bob 6

考虑到刚刚的做法,其不能进一步应用于 \(t>2\),主要是因为我们无法确定答案的值域,刚刚的做法是挂掉的(必须得有数目足够多的元素在外围“盖住”当前的答案,使得不会有更小解被误选择)。

我们猜测实际值域不会很大,尝试把刚才的过程再做几轮,试着跑一跑?

这部分代码如下:

int main()
{
#ifdef MYEE
freopen("QAQ.in","r",stdin);
// freopen("QAQ.out","w",stdout);
#endif
static chr Op[50];
uint s,t;scanf("%u%s%u",&s,Op,&t);
if(t>6)exit(0);
static std::vector<std::pair<uint,uint> >X[1000005],Y[1000005];
uint Lim1=4*s*s+100,Lim2=5*s+100;
for(uint m=s;m<=Lim2;m++)for(uint n=m;n*m<=Lim1&&n+m<=Lim2;n++){
X[n*m].push_back({m,n});
Y[n+m].push_back({m,n});
}
static bol Xi[1000005],Yi[1000005];
std::vector<uint>Ag,Bg;
for(uint i=1;i<=Lim1;i++)if(X[i].size())Ag.push_back(i),Xi[i]=1;
for(uint i=1;i<=Lim2;i++)if(Y[i].size())Bg.push_back(i),Yi[i]=1;
std::vector<uint>User;
for(uint i=0;i<t;i++)if(!(i&1)==(*Op=='B')){
for(auto b:Bg){
uint c=0;
for(auto g:Y[b])c+=Xi[g.first*g.second];
if(c>=2)User.push_back(b);
else Yi[b]=0;
}
Bg=User,User.clear();
}
else{
for(auto a:Ag){
uint c=0;
for(auto g:X[a])c+=Yi[g.first+g.second];
if(c>=2)User.push_back(a);
else Xi[a]=0;
}
Ag=User,User.clear();
}
if((t&1)==(*Op=='B')){
for(auto a:Ag){
uint c=0;
for(auto g:X[a])c+=Yi[g.first+g.second];
if(c==1)User.push_back(a);
else Xi[a]=0;
}
uint x=-1,y=-1;
for(auto a:User)for(auto g:X[a])if(Yi[g.first+g.second]){
uint c=0;
for(auto p:Y[g.first+g.second])c+=Xi[p.first*p.second];
if(c==1){
if(g.first+g.second<x+y||(g.first+g.second==x+y&&g.first<x))
x=g.first,y=g.second;
}
}
printf("%u %u\n",x,y);
}
else{
for(auto b:Bg){
uint c=0;
for(auto g:Y[b])c+=Xi[g.first*g.second];
if(c==1)User.push_back(b);
else Yi[b]=0;
}
for(auto b:User)for(auto g:Y[b])if(Xi[g.first*g.second]){
uint c=0;
for(auto p:X[g.first*g.second])c+=Yi[p.first+p.second];
if(c==1){
printf("%u %u\n",g.first,g.second);
return 0;
}
}
}
return 0;
}

依次分别得到

1 4
80 84
162 170
100 110
126 128

似乎……也不是很大?

交一下……是对的!

胆子放大点,继续来做 \(16\sim20\)!

把代码改一下,运行

4 Bob 7
117 Alice 8
161 Alice 9
134 Alice 10
77 Bob 11

得到输出

4 12
128 135
182 184
135 176
78 108

还是很小啊!

直接把剩下的(\(21\sim25\))都跑一遍。

177 Bob 12
178 Bob 13
179 Bob 14
180 Bob 15
178 Alice 15

得到输出

185 216
180 222
192 210
180 224
196 208

直接就过了!!!

总复杂度不会证明,但应该是 \(O(s^2t)\) 或 \(O(s^2)\) 的。

Code

最终代码不给了,把上面那个 \(t\le6\) 的代码改一改就是了。

提交答案题一份代码速通的艺术是怎样的啊。

loj2511的更多相关文章

随机推荐

  1. vue3学习第一天

    第一章 Options API与Composition API 重写双向绑定 vue2 基于Object.defineProperty()实现 vue3 基于Proxy proxy与Object.de ...

  2. [深度学习] 经典深度学习模型及其微调(Caffe)总结

    目录 经典模型 Caffe预训练模型 经典模型 LeNet https://blog.csdn.net/kaido0/article/details/53161684 AlexNet https:// ...

  3. Jupyter Notebook入门指南

    作者:京东科技隐私计算产品部 孙晓军 1. Jupyter Notebook介绍 图1 Jupter项目整体架构 [https://docs.jupyter.org/en/latest/project ...

  4. 腾讯出品小程序自动化测试框架【Minium】系列(一)环境搭建之第一个测试程序

    一.什么是Minium? minium是为小程序专门开发的自动化框架,使用minium可以进行小程序UI自动化测试. 当然,它的能力不仅仅局限于UI自动化, 比如: 使用minium来进行函数的moc ...

  5. 一文解决如何使用 C 语言判断质数(素数)[ 附解析与源码 ]

    前言 质数历来都是数学界的宠儿,是数学里神秘的谜团. 质数又和 C 语言有着不解之缘,本篇文章将讲解如何用 C 语言判断质数. 为了方便大家在读完此文章后使用文中程序,我会将判断质数的程序封装成函数, ...

  6. day07-Spring管理Bean-IOC-05

    Spring管理Bean-IOC-05 3.基于注解配置bean 3.3自动装配 基本说明: 基于注解配置bean,也可以实现自动装配,使用的注解是:@AutoWired或者@Resource @Au ...

  7. C# 线程同步查漏补缺

    同步构造 当线程 A 在等待一个同步构造,另一个线程 B 持有构造一直不释放,那么就会导致线程 A 阻塞.同步构造有用户模式构造和内核模式构造. 用户模式构造通过 CPU 指令来协调线程,所以速度很快 ...

  8. 【总结笔记】全志平台 Linux ASOC 框架浅析

    ASOC 各部分框图示意 Platform 一般由 SOC 芯片原厂负责编写,主要涉及到 SOC 内部数字音频接口DAI(I2S)和 DMA 的寄存器配置. Codec 一般由硬件方案的驱动工程师或者 ...

  9. jwt的一些封装

    package study; import java.io.File; import java.io.IOException; import java.nio.file.Files; import j ...

  10. spring源码写注释

    转:https://blog.csdn.net/z_c8819/article/details/105258015 1.从GitHub上下载spring项目 https://github.com/sp ...