Link-Cut-Tree(1)
求解范围:(动态树问题)
- 树上路径查询、修改
- 动态连边、删边
- 换根
- lca
算法逻辑
概念:
- 类似树链剖分,把一棵树拆成许多链,每个链用splay维护(链上的为实边,否则为虚边),splay中以\(dep\)为关键字(左浅右深),splay里点之间用\(fa\)和\(son[0/1]\)连接,不同链之间用\(par\)连接(par是单向的(下->上))。
\(par\)存在splay的根中,值为该splay中 \(dep\) 最小(浅)的父亲(可以想象一下跳到原树中的那条链的顶端的父亲)
流程:
access
- 作用:将u往上到根的路径,拆成一条链
- 操作:
1.\(v\)为过程中一点,且到右儿子存在实边,则需要断开\(v\)与右端点的实边(变为虚边)。
2.\(u\)沿着par往上跳(直到根),每次到一个新的splay就跟上一个splay链合并一下。(同时更新1) - Code:
void access(int x) {
int y=0;
while(x) {
splay(x);P_dw(x);
if(son[x][1]) fa[son[x][1]]=0,par[son[x][1]]=x;
son[x][1]=y;fa[y]=x; //??splay
P_up(x);
y=x;x=par[x];
}
}
LCA(x,y)
- 操作:\(access(x)\),\(access(y)\)中\(y\)往上跳到与根在同一个splay里面时,所在的点\(d\)即为lca。
- 证明:显然\(par\)的定义是到该splay树最浅的点的\(fa\),所以\(y\)往上跳,到根(\(x\))所在splay树中的点是其中最浅的点,又因为这个点深度+1刚好跳出该链树,\(x\)就经过不了,因此这个点也就是\(d\)。
小细节
- \(par\)是需要存储于每个splay_tree的根处,所以每次splay后要手动更新赋值。
- splay()前要手动递归从根到该点Pushdown。
- 可以不用\(par\),只用\(fa\),不过要慢一些呀。
ps.还有很多其余的操作可以见下面这道题的代码:
OTOCI
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
bool Lazy[N];
int val[N],son[N][2],sum[N];
int par[N],fa[N];
int q,n;
void P_up(int x) {sum[x]=val[x]+sum[son[x][0]]+sum[son[x][1]];}
void P_dw(int x) {
if(!Lazy[x])return;
swap(son[x][0],son[x][1]);
Lazy[son[x][0]]^=1,Lazy[son[x][1]]^=1;Lazy[x]=0;
}
bool Type(int x) {return son[fa[x]][1]==x;}
void rotate(int x) {
int y=fa[x],z=fa[y],k=Type(x);
fa[x]=z;if(z)son[z][Type(y)]=x;
son[y][k]=son[x][k^1];fa[son[y][k]]=y;
son[x][k^1]=y;fa[y]=x;
P_up(y);P_up(x);
}
void _spdw(int u,int x) {
if(!fa[u]) {par[x]=par[u];P_dw(u);return;}
_spdw(fa[u],x);
P_dw(u);
}
void splay(int x) {
_spdw(x,x);
for(int f=fa[x];f=fa[x];rotate(x)) {
if(fa[f]) rotate(Type(x)==Type(f)?f:x);
}
}
void access(int x) {
int y=0;
while(x) {
splay(x);P_dw(x);
if(son[x][1]) fa[son[x][1]]=0,par[son[x][1]]=x;
son[x][1]=y;fa[y]=x; //??splay
P_up(x);
y=x;x=par[x];
}
}
void mk_rt(int x) {access(x);splay(x);Lazy[son[x][0]]^=1;Lazy[son[x][1]]^=1;swap(son[x][0],son[x][1]);}
int Fd_rt(int x) {access(x);splay(x);while(son[x][0])x=son[x][0];splay(x);return x;}
void split(int x,int y) {mk_rt(x);access(y);splay(y);} //??
void Link(int x,int y) {mk_rt(x);par[x]=y;}
int Sum(int x,int y) {split(x,y);return sum[y];}
int main() {
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&val[i]),sum[i]=val[i];
scanf("%d",&q);
while(q--) {
char ch[21]; int x,y;
scanf("%s%d%d",ch,&x,&y);
if(ch[0]=='b') {
// printf("!%d %d\n",Fd_rt(x),Fd_rt(y));
if(Fd_rt(x)!=Fd_rt(y)) {printf("yes\n");Link(x,y);}
else printf("no\n");
}
else if(ch[0]=='p') {
splay(x);val[x]=y;P_up(x);
}
else {
// printf("!%d %d\n",Fd_rt(x),Fd_rt(y));
if(Fd_rt(x)!=Fd_rt(y)) {printf("impossible\n");continue;}
printf("%d\n",Sum(x,y));
}
}
return 0;
}
Link-Cut-Tree(1)的更多相关文章
- link cut tree 入门
鉴于最近写bzoj还有51nod都出现写不动的现象,决定学习一波厉害的算法/数据结构. link cut tree:研究popoqqq那个神ppt. bzoj1036:维护access操作就可以了. ...
- Codeforces Round #339 (Div. 2) A. Link/Cut Tree 水题
A. Link/Cut Tree 题目连接: http://www.codeforces.com/contest/614/problem/A Description Programmer Rostis ...
- Link/cut Tree
Link/cut Tree 一棵link/cut tree是一种用以表示一个森林,一个有根树集合的数据结构.它提供以下操作: 向森林中加入一棵只有一个点的树. 将一个点及其子树从其所在的树上断开. 将 ...
- 洛谷P3690 Link Cut Tree (模板)
Link Cut Tree 刚开始写了个指针版..调了一天然后放弃了.. 最后还是学了黄学长的板子!! #include <bits/stdc++.h> #define INF 0x3f3 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- bzoj2049 [Sdoi2008]Cave 洞穴勘测 link cut tree入门
link cut tree入门题 首先说明本人只会写自底向上的数组版(都说了不写指针.不写自顶向下QAQ……) 突然发现link cut tree不难写... 说一下各个函数作用: bool isro ...
- P3690 【模板】Link Cut Tree (动态树)
P3690 [模板]Link Cut Tree (动态树) 认父不认子的lct 注意:不 要 把 $fa[x]$和$nrt(x)$ 混 在 一 起 ! #include<cstdio> v ...
- Link Cut Tree学习笔记
从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...
- [CodeForces - 614A] A - Link/Cut Tree
A - Link/Cut Tree Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, ...
- Link Cut Tree 总结
Link-Cut-Tree Tags:数据结构 ##更好阅读体验:https://www.zybuluo.com/xzyxzy/note/1027479 一.概述 \(LCT\),动态树的一种,又可以 ...
随机推荐
- hive从入门到放弃(四)——分区与分桶
今天讲讲分区表和分桶表,前面的文章还没看的可以点击链接: hive从入门到放弃(一)--初识hive hive从入门到放弃(二)--DDL数据定义 hive从入门到放弃(三)--DML数据操作 分区 ...
- java中如何能知道应该捕获什么样的异常?举例
我怎么知道应该捕获什么样的异常? 马克-to-win:如上例1.1:开始没加try时,程序崩溃,系统打印的是如下的错误,Exception in thread "main" jav ...
- ubantu系统之快捷键使用
1. 文件管理器中,目录切换为可以编辑的状态: ctrl + l 2. gedit 搜索 : ctrl + h
- Spring-JdbcTemplate(注入到spring容器)-02
1.导入spring-jdbc和spring-tx坐标 <dependency> <groupId>junit</groupId> <artifactId&g ...
- Java-GUI编程之绘图
绘图 很多程序如各种小游戏都需要在窗口中绘制各种图形,除此之外,即使在开发JavaEE项目时,有时候也必须"动态"地向客户 端生成各种图形.图表,比如 图形验证码.统计图等,这都需 ...
- Java面试整理(精简版)
Java面向对象有哪些特征,如何应用 特征(OOP) 解释说明 通俗理解 关系联系 作用 封装 隐藏内部细节,只对外暴露访问方法 属性/方法封装,便于使用,限制不合理操作 类-类 低耦合,高内聚,增强 ...
- 简单说一说jsonp原理
背景:由于浏览器同源策略的限制,非同源下的请求,都会产生跨域问题,jsonp即是为了解决这个问题出现的一种简便解决方案. 同源策略即:同一协议,同一域名,同一端口号.当其中一个不满足时,我们的请求即会 ...
- python基础练习题(题目 统计 1 到 100 之和)
day31 --------------------------------------------------------------- 实例045:求和 题目 统计 1 到 100 之和. 分析: ...
- vue3 数据可视化项目
可视化面板介绍 应对现在数据可视化的趋势,越来越多企业需要在很多场景(营销数据,生产数据,用户数据)下使用,可视化图表来展示体现数据,让数据更加直观,数据特点更加突出. 01-使用技术 完成该项目 ...
- 记一次sql注入的解决方案
点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 本文在公众号文章已同步,还有各种一线大厂面试原题.我的学习系列笔记. 今天业务提了个模糊查询,一听就知道这种问题有坑,肯定涉及到sql注入, ...