min-max 容斥简记
min-max 容斥实际上就是这么个式子:
\]
可以通过构造系数二项式反演证明。
这个式子在期望意义下也是正确的,通常用于将搞定全部
转化位搞定其中一个
进而转化为不包含某个子集
的方案计数,或找完的时间
转化为第一次找到的时间
。由于直接根据式子算是指数级的,通常还需要一些 dp 之类转化。
P4707 重返现世
有 \(n\) 种原料,需要集齐任意 \(k\) 种。每单位时间第 \(i\) 种原料被生成的概率是 \(\frac{p_i}{m}\) 。求期望时间。
- \(n\le 1000\),\(|n-k|\le 10\),\(\sum p = m\le 10000\)
即求 \(E(\min(U_k))\),即 \(E(\max(U_{n-k+1}))\)。使用 min-max 容斥,我们需要求求和号后的东西。\(E(\min(T))\) 是好算的:\(\dfrac{m}{\sum_{i\in T} p_i}\),剩下的部分只与 \(|T|,k\) 有关,以此为状态 dp,通过拆组合数转移。
「PKUWC2018」随机游走
给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去。
有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步。
特别地,点 \(x\)(即起点)视为一开始就被经过了一次。
min-max 容斥后转化为求第一次到达某个点集的期望时间,可以列出一个随机游走的转移,用树上高消解出系数即可。还要求子集和,FWT 预处理即可。
「2020-02-16 联考」染色 (color)
有一棵 \(n\) 个点的树,一开始所有点都是白色。
接下来有若干次操作。每次操作会等概率选取树上的一条路径,把路径上所有节点涂黑。当整棵树都被染黑时,操作就会停止。
求结束前期望进行多少次操作,答案输出时对 \(1\ 004\ 535\ 809\ (479\times 2^{21}+1)\) 取模。
min-max 容斥,相当于在树上选 \(k\) 个点,将树分成若干连通块,每条路径在小连通块内选的概率,需要记录连通个数和 \(\sum \dfrac{|B|(|B|+1)}2\),树上背包 dp 这个东西即可。可以 NTT 优化,但是不优化也过了。
min-max 容斥简记的更多相关文章
- min-max 容斥
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...
- Min-max 容斥与 kth 容斥
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- UVa12633 Super Rooks on Chessboard(容斥 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...
- hdu1695:数论+容斥
题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- min-max容斥学习笔记
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...
- min-max容斥 hdu 4336 && [BZOJ4036] 按位或
题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...
随机推荐
- ABAP 委外采购收货调用过账bapi
相关的表: ekko:采购凭证抬头表 用于判断是否委外 ekpo:采购凭证行项目表 用于判断是否委外以及委外采购的数量 resb:获取委外采购单中bom的相应预留 mseg:获取已经委外原材料出库给供 ...
- 数值分析之解线性方程组的直接方法 5.X
矩阵 谱分解 设 \(\boldsymbol{A}=a_{i j} \in \mathbb{R}^{n \times n}\) , 若存在数 \(\lambda\) (实数或复数) 和非零向量 \(\ ...
- 杭电oj Lowest Common Multiple Plus
Problem Description 求n个数的最小公倍数. Input 输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数. Output 为每组测试数据输出它们的最 ...
- Monstache的安装和使用
一.什么是Monstache Monstache 是Golang语言实现的基于MongoDB的oplog实现实时数据同步及订阅的插件,支持MongoDB与ES之间的数据同步.其中MongoDB需要搭建 ...
- redis之五种基本数据类型
五种基本数据类型 redis存储任何类型的数据都是以key-value形式保存,并且所有的key都是字符串,所以讨论基础数据结构都是基于value的数据类型 常见的5种数据类型是:String.Lis ...
- jquery 中上传的图片file文件,如果在html img元素中通过src展示 ,可以img的图片src属性直接去等于file文件吗,如果不可以的话,那么src怎么去展示file文件呢
bot回答: Answer: 不可以.文件不能直接设置为 img 元素的 src 属性值.要展示 file 文件,需要在 img 属性中使用 JavaScript 来实现,可以参考以下代码: < ...
- 090_Java
在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身.养成良好的编码习惯非常重要,能够显著地提升程序性能. ● 1. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载 ...
- 用keil调试程序的时候,一点击调试就弹出STARTUP.A51那个窗口,解决办法
前天晚上我折腾了很久 网上查了各种方法.最终自己发现,调试之前一定要在keil编译一遍,再debug这样就不会弹窗了. 另外,keil在调试过程中,修改代码是不会有任何作用的,你看我故意写错,继续单步 ...
- 【C++】【纯代码】获取电脑的mac地址
bool GetMacAddress(CString &LanMAC) { #define MAX_ADAPTER_NAME_LENGTH 256 #define MAX_ADAPTER_DE ...
- float高度塌陷和BFC
开启BFC方式: 1.设置浮动float(副作用比较大,不推荐) 2.将元素设置为行内块元素 display:inline-block:(不推荐) 3.将元素的overlfow设置为非visible的 ...