这是更新日志

  • \(2021/2/9\) 代数推导
  • \(2021/2/10\) 组合意义,构建 TOC

枚举子集

枚举子集为什么是 \(O(3^n)\) 的 .

考虑 一种常见的枚举子集方式

for (int s = u; s; s = (s - 1) & u) {
// s 是 u 的一个非空子集
}

显然单次枚举 \(S\) 的一个子集是 \(O(2^{|S|})\) 的 .

复杂度证明

组合意义天地灭,代数推导保平安。

代数推导

为什么枚举 \(S\) 的所有子集的子集的时间复杂度是 \(O(3^n)\) 的 .

显然枚举大小为 \(n\) 的集合 \(S\) 的复杂度是

\[O\left(\sum_{T\subseteq S}2^{|T|}\right)
\]

不难发现,\(S\) 中大小为 \(l\) 的子集个数是 \(\dbinom nl\),这是简单的组合数学知识 .

转而枚举 \(l\),于是原式就化为

\[O\left(\sum_{i=1}^n\dbinom ni 2^i\right)
\]

然后里面这个东西可以由众所周知的谔项式定理化简

\[\begin{aligned}\sum_{i=1}^n\dbinom ni 2^i&=\sum_{i=1}^n\dbinom ni 2^i1^{n-i}\\&=(1+2)^n-1\\&=O(3^n)\end{aligned}
\]

于是,枚举 \(S\) 的所有子集的子集的时间复杂度是 \(O(3^n)\) 的 .

证毕 .

组合意义

OI-Wiki 那个奇妙的组合意义解法没看懂 .

Alpha 神也说了这个做法:

大概就是考虑每个元素然后计数有多少个集合包含它,吧 .

《这显然是个双射》

Summary

一个集合 \(S\) 所有子集的子集数之和为 \(3^n\) .


感谢 SoyTony 神仙的指导 orz

感谢 fjy666 神仙的指导 orz

感谢 Alpha1022 神仙的指导 orz

枚举子集为什么是 O(3^n) 的的更多相关文章

  1. hdu_5616_Jam's balance(暴力枚举子集||母函数)

    题目连接:hdu_5616_Jam's balance 题意: 给你一些砝码,和一些要被称出的重量,如果这些砝码能称出来输出YES,否则输出NO 题解:我们想想,这题求组合方式,我们这里可以直接用母函 ...

  2. hdu1045 Fire Net---二进制枚举子集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 题目大意: 给你一幅n*n的图,再给你一些点,这些点的上下左右不能再放其他点,除非有墙('X') ...

  3. UVA1354-Mobile Computing(二进制枚举子集)

    Problem UVA1354-Mobile Computing Accept:267  Submit:2232 Time Limit: 3000 mSec  Problem Description ...

  4. 算法笔记-- 二进制集合枚举子集 && 求子集和 && 求父集和

    枚举子集: 复杂度:O(2^k) )&s); 用sos dp求解子集和以及父集和 子集和: ; i <= k; i--) { ; mask < (<<k); mask+ ...

  5. uva1354 天平难题 【位枚举子集】||【huffman树】

    题目链接:https://vjudge.net/contest/210334#problem/G 转载于:https://blog.csdn.net/todobe/article/details/54 ...

  6. UVa 11825 - Hackers' Crackdown DP, 枚举子集substa = (substa - 1)&sta 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  7. UVA 1508 - Equipment 状态压缩 枚举子集 dfs

    UVA 1508 - Equipment 状态压缩 枚举子集 dfs ACM 题目地址:option=com_onlinejudge&Itemid=8&category=457& ...

  8. 枚举子集&高位前缀和

    最近做的题里面有这个东西,于是写一篇博客总结一下吧. 枚举子集 枚举子集就是状压的时候枚举其中的二进制位中的1的子集.直接暴力枚举二进制位时间复杂度是\(O(4^n)\),但是我们可以发现,对于每一位 ...

  9. 枚举子集 Codeforces306 Div2 B

    题目 分析:用二进制法去枚举子集,同时判断满足条件的子集个数加1 #include "iostream" #include "cstdio" using nam ...

  10. 紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)

    标题指的边集是说这道题的套餐, 是由几条边构成的. 思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定 ...

随机推荐

  1. .net 项目使用 JSON Schema

    .net 项目使用 JSON Schema 最近公司要做配置项的改造,要把appsettings.json的内容放到数据库,经过分析还是用json的方式存储最为方便,项目改动性最小,这就牵扯到一个问题 ...

  2. 安装Redis到Linux(源码)

    运行环境 系统版本:Ubuntu 16.04.2 LTS 软件版本:redis-5.0.4 硬件要求:无 安装过程 1.配置系统参数 root@localhost:~# vim /etc/sysctl ...

  3. 蓝牙、WiFi、ZigBee三大无线通信技术协议模块哪一个是最好的?

    曾经,在2015年极客公园创新大会上,小米首次在非官方平台发布了新款产品小米智能家庭套装.自此,Zigbee便常出现在大众视野中. 如今,小米在IoT物联网应用开发者平台上明确说明,不再推广Zigbe ...

  4. Spring基础只是—AOP的概念介绍

    Spring容器包含两个重要的特性:面向切面编程(AOP)和控制反转(IOC).面向切面编程是面向对象(OOP)的一种补充,在面向对象编程的过程中编程针对的目标是一个个对象,而面向切面编程中编程针对的 ...

  5. ExtJS 布局-Column布局(Column layout)

    更新记录: 2022年6月1日 开始. 2022年6月4日 发布. 1.说明 使用列布局,可以将容器拆分为特定大小的列,并将子组件放置在这些列中. 可以设置子组件宽度值为: 百分比(相对父容器宽度) ...

  6. 快速全面了解QT软件界面开发技术

    快速全面了解QT软件界面开发技术     目录 前言 一. 学习QT可能的目的是什么? 只想体验一下QT? 当前的项目选择了用QT. 为将来做QT技术储备. 二. QT的核心技术优势是什么? QT在软 ...

  7. 能快速搭建三维场景,这款3D全场景编辑器你还没用过吗?

    今天就给大家分享一个非常好用的老子云3D全场景编辑器,不仅可以基于GIS数据,帮助用户快速搭建3D城市大场景.实现Web端流畅展示. 并且搭建的3D场景可离线开发成一个空间信息直观的.可交互.易于设计 ...

  8. PotPlayer播放百度云盘视频

    需要的工具 PotPlayer.油猴tampermonkey.坚果(这个不用下载,有个账号就行) 下载地址:百度网盘 步骤 安装油猴tampermonkey 拖拽Tampermonkey_4.14.c ...

  9. bat-注册表

    注册表 注册表就像于是配置文件 linux下一切皆文件,windows下一切皆注册表 注册表(各种配置文件:系统设置.用户设置.软件的配置) HKEY_CLASSES_ROOT     超级管理员.系 ...

  10. 用python随随便便做一个二维码叭~~~

    Python是目前最好的编程语言之一.由于其可读性和对初学者的友好性,已被广泛使用. 那么要想学会并掌握Python,可以实战的练习项目是必不可少的. 接下来,我将给大家介绍非常实用的Python项目 ...