K阶斐波那契数列--------西工大NOJ习题.10

原创不易,转载请说明出处!!!

科普:k阶斐波那契数列的0到n-1项需要有初始值。

其中,0到n-2项初始化为0,第n-1项初始化为1.

在这道题目中,所引用的函数详见:数据结构实现——循环队列

(我的一篇博文)

我使用的方法是尺取法,这样可以大大地减小时间复杂度。

具体见代码:

#include <stdio.h>
#include <stdlib.h>
typedef int Elem;
typedef struct Queue
{
Elem *data;
int head;
int tail;
int size;//仅仅是一个功能,程序的判空,判断满并不依赖。
int MAX_SIZE;//是真正申请的最大值,实际存放MAX_SIZE-1个。
}Queue;
//函数原形声明
Queue *Creat(int max);
int Size(Queue* Q);
Elem GetTail(Queue *Q);
Elem GetHead(Queue *Q);
int Pop(Queue *Q);
int Push(Queue *Q, Elem e);
int Full(Queue* Q);
int Empty(Queue *Q);
int Destroy(Queue* Q); Queue *Creat(int max)
{
if(max <= 0)
return NULL;
Elem *D = (Elem*)calloc(max + 1, sizeof(Elem));
if(!D)
return NULL;
Queue *Q = (Queue*)malloc(sizeof(Queue));
if(!Q)
{
free(D);
return NULL;
}
Q->MAX_SIZE = max + 1;
Q->data = D;
Q->head = 0;
Q->tail = 0;
Q->size = 0;
return Q;
} int Destroy(Queue* Q)
{
if(!Q)
return 0;
free(Q->data);
free(Q);
return 1;
}
int Empty(Queue *Q)
{
if(Q->head == Q->tail)
return 1;
else
return 0;
}
int Full(Queue* Q)
{
if((Q->tail+1)%Q->MAX_SIZE == Q->head)
return 1;
else
return 0;
} int Push(Queue *Q, Elem e)
{
if(Full(Q))
return 0;
Q->data[Q->tail] = e;
Q->tail = (Q->tail + 1)%Q->MAX_SIZE;
Q->size += 1;
return 1;
} int Pop(Queue *Q)
{
if(Empty(Q))
return 0;
Q->head = (Q->head + 1) % Q->MAX_SIZE;
Q->size -= 1;
return 1;
} Elem GetHead(Queue *Q)
{
if(Empty(Q))
{
*(int *)NULL;//专门让程序crash
}
return Q->data[Q->head];
}
Elem GetTail(Queue *Q)
{
if(Empty(Q))
{
*(int *)NULL;//专门让程序crash
}
int t;
t = Q->tail;
t -= 1;
if(t >= 0)
return Q->data[t];
else
{
return Q->data[Q->MAX_SIZE-1];
}
}
int Size(Queue* Q)
{
return Q->size;
} int main()
{
int max, n;
scanf("%d%d",&max, &n);
int sum = 0;//使用尺取法
Queue* Q = Creat(n);//指定大小为n.
for(int i = 1; i <= n; i++)//先在队列中塞下前n项
{
if(i < n)
Push(Q,0);
else
Push(Q,1);
}
sum = 1;//初始化n项的和
while(sum<=max)//当要增加的小于等于最大值时,继续算.
{
int tmp = sum;//前一时刻的sum和
sum -= GetHead(Q);
Pop(Q);
sum += tmp;//更新sum,为下一次做准备
Push(Q,tmp);
}
for(int i = 1; i <= n; i++)//依次输出
{
printf("%d ",GetHead(Q));
Pop(Q);
}
Destroy(Q);//销毁循环队列.
return 0;
}

K阶斐波那契数列--------西工大NOJ习题.10的更多相关文章

  1. k阶斐波那契数列fibonacci第n项求值

    已知K阶斐波那契数列定义为:f0 = 0,  f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … ...

  2. 【严蔚敏】【数据结构题集(C语言版)】1.17 求k阶斐波那契序列的第m项值的函数算法

    已知k阶斐波那契序列的定义为 f(0)=0,f(1)=0,...f(k-2)=0,f(k-1)=1; f(n)=f(n-1)+f(n-2)+...+f(n-k),n=k,k+1,... 试编写求k阶斐 ...

  3. 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造

    一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...

  4. 关于k阶裴波那契序列的两种解法

    在学校的anyview的时候,遇到了这个题: [题目]已知k阶裴波那契序列的定义为f(0)=0, f(1)=0, ..., f(k-2)=0, f(k-1)=1;f(n)=f(n-1)+f(n-2)+ ...

  5. 九度OJ 1205:N阶楼梯上楼问题 (斐波那契数列)

    时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:3739 解决:1470 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整 ...

  6. 2018年东北农业大学春季校赛 K wyh的数列【数论/斐波那契数列大数取模/循环节】

    链接:https://www.nowcoder.com/acm/contest/93/K来源:牛客网 题目描述 wyh学长特别喜欢斐波那契数列,F(0)=0,F(1)=1,F(n)=F(n-1)+F( ...

  7. 斐波那契数列—Java

    斐波那契数列想必大家都知道吧,如果不知道的话,我就再啰嗦一遍, 斐波那契数列为:1 2 3 5 8 13 ...,也就是除了第一项和第二项为1以外,对于第N项,有f(N)=f(N-1)+f(N-2). ...

  8. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  9. 斐波那契数列(递归)&求100以内的素数

    Java 5 添加了 java.util.Scanner 类,这是一个用于扫描输入文本的新的实用程序.它是以 前的 StringTokenizer 和 Matcher 类之间的某种结合.由于任何数据都 ...

随机推荐

  1. elastic search(以下简称es)

    参考博客园https://www.cnblogs.com/Neeo/p/10304892.html#more 如何学好elasticsearch 除了万能的百度和Google 之外,我们还有一些其他的 ...

  2. HTML语言的简要学习

    什么是HTML? HTML 是用来描述网页的一种语言. l  HTML 指的是超文本标记语言 (Hyper Text Markup Language) l  HTML 不是一种编程语言,而是一种标记语 ...

  3. 管家婆财贸ERP系列功能对比财贸c3-c8-c9功能对比介绍

    管家婆财贸ERP系列功能对比财贸c3-c8-c9功能对比介绍 管家婆财贸ERP产品功能 序号 名称 说明 一 采购管理 对日常订货.入库.退货.估价入库等业务进行处理,多种方便灵活的订单定制方式,实现 ...

  4. Vue的computed和watch的使用和区别

    一.computed: 模板内表达式非常便利,可用于简单计算,当模板内放入太多的逻辑时,模板会过重且难以维护:可以使用computed替代 计算属性是基于它们的响应式依赖进行缓存的,当依赖的响应式数据 ...

  5. PCIe引脚PRSNT与热插拔

    热插拔的基本目的是要让PCIe设备按照规定的顺序.原则,从系统中移除或插入到系统中来,并能正常的工作,且不影响系统的正常运行.事实上,PCIe"热插拔"的关键目的就是为前面面所提到 ...

  6. 08shell脚本

    shell脚本编程 1.1简介 什么是shell脚本 shell脚本: 就是一些命令的集合, 在脚本文件中可以有流程控制, 如顺序, 条件分支和循环等 脚本文件一般一.sh文件为扩展名, 但是不是必须 ...

  7. Excel导表工具-开源

    功能 支持int.float.bool.string基础类型 支持数组 支持kv 支持枚举 支持unity类型vector3,vector2,color 自动生成csharp类 单个excel中多个s ...

  8. 前端3JS2

    内容概要 运算符 流程控制 三元运算符 函数 自定义对象 内置对象 JSON对象 正则对象 内容详情 运算符

  9. python基础学习7

    python基础学习7 内容概要 字符串的内置方法 字符串的内置方法(补充) 列表的内置方法 可变类型与不可变类型 队列与堆栈 内容详情 字符串的内置方法 # 1.strip 移除字符串首尾的指定字符 ...

  10. python创建分类器小结

    简介:分类是指利用数据的特性将其分成若干类型的过程. 监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类. 一.简单分类器 首先,用numpy创建一些基本的数据,我们创建了8个点 ...