概述

在上一节中介绍了两种加密方法

  • 对称加密
  • 非对称加密

其中对称加密性能高,但是有泄露密钥的风险,而非对称加密相反,加密性能较差,但是密钥不易泄露,那么能不能把他们进行一下结合呢?

HTTPS采用混合加密

HTTPS经由HTTP进行通信,但利用SSL/TLS来加密数据包,而SSL/TLS的加密方式就是采用了对称加密与非对称加密的结合。

SSL/TLS考虑到非对称加密的性能较低,所以在初始协商对称加密密钥时,使用了非对称加密,当对称加密密钥协商完成后,则后续所有的通讯,全部采用对称加密进行通讯。



但是这种方式无法证明公开密钥就是真实服务器的公开密钥,假设与B服务器进行通信,怎么确认公开密钥是B服务器的,后续在公开密钥传输途中已经被替换了,但是却发现不了。

由于任何人都可以访问服务器,所以不可能一一把公钥告诉他们,那么能不能提供一个公钥下载的地方让客户机访问服务器时先下载公钥,但是下载公钥的地址也有可能是假的,不可取。

那么有没有更好的方式,既能安全的获取公钥又能确保访问的服务器是真实的?答案:由数字证书认证机构颁发(CA)公开密钥证书

数字证书认证机构是客户端和服务器端都可以信赖的第三方机构,VeriSign就是一家数字证书机构。流程如下:

  1. 企业向证书机构提出公开密钥申请。
  2. 证书机构首先对公司身份进行核实,核实通过去,使用自己的私钥对企业服务器的公开密钥进行数字签名,并把签名信息绑定在公钥证书里下发给企业。
  3. 拿到证书的客户端对证书的签名进行校验,验证通过,即可确认:
    1. 服务器的公开密钥是值得信赖的
    2. 根据数字证书签发机构是真实有效的数字证书认证机构。

这里应该有人好奇,证书签发机构的公钥是怎么传到客户端的?浏览器在发布时,已经包含了主流的认证的机构的公开密钥了,所以是不需要传输的。

HTTPS通信流程

上图大致描述了 SSL/TLS 的握手过程,具体细节如下:

  1. Client Hello

    握手第一步是客户端向服务端发送 Client Hello 消息,这个消息里包含了一个客户端生成的随机数 Random1、客户端支持的加密套件(Support Ciphers)和 SSL Version 等信息。通过 Wireshark 抓包,我们可以看到如下信息:

  2. Server Hello

    第二步是服务端向客户端发送 Server Hello 消息,这个消息会从 Client Hello 传过来的 Support Ciphers 里确定一份加密套件,这个套件决定了后续加密和生成摘要时具体使用哪些算法,另外还会生成一份随机数 Random2。注意,至此客户端和服务端都拥有了两个随机数(Random1+ Random2),这两个随机数会在后续生成对称秘钥时用到。

  3. Certificate

    这一步是服务端将自己的证书下发给客户端,让客户端验证自己的身份,客户端验证通过后取出证书中的公钥。

  4. Server Hello Done

Server Hello Done 通知客户端 Server Hello 过程结束。

  1. Client Key Exchange

客户端收到服务端传来的证书后,先从 CA 验证该证书的合法性,验证通过后取出证书中的服务端公钥,再生成一个随机数 Random3,再用服务端公钥非对称加密 Random3生成 PreMaster Key。

Client Key Exchange 就是将这个 key 传给服务端,服务端再用自己的私钥解出这个 PreMaster Key 得到客户端生成的 Random3。至此,客户端和服务端都拥有 Random1 + Random2 + Random3,两边再根据同样的算法就可以生成一份秘钥,握手结束后的应用层数据都是使用这个秘钥进行对称加密。为什么要使用三个随机数呢?这是因为 SSL/TLS 握手过程的数据都是明文传输的,并且多个随机数种子来生成秘钥不容易被暴力破解出来。客户端将 PreMaster Key 传给服务端的过程如下图所示:

  1. Change Cipher Spec(Client)

这一步是客户端通知服务端后面再发送的消息都会使用前面协商出来的秘钥加密了,是一条事件消息。

  1. Encrypted Handshake Message(Client)

这一步对应的是 Client Finish 消息,客户端将前面的握手消息生成摘要再用协商好的秘钥加密,这是客户端发出的第一条加密消息。服务端接收后会用秘钥解密,能解出来说明前面协商出来的秘钥是一致的。

  1. Change Cipher Spec(Server)

这一步是服务端通知客户端后面再发送的消息都会使用加密,也是一条事件消息。

  1. Encrypted Handshake Message(Server)

这一步对应的是 Server Finish 消息,服务端也会将握手过程的消息生成摘要再用秘钥加密,这是服务端发出的第一条加密消息。客户端接收后会用秘钥解密,能解出来说明协商的秘钥是一致的。

  1. Application Data

应用层协议通信即发送HTTP请求。

HTTPS实现原理分析的更多相关文章

  1. Charles的HTTPS抓包方法及原理分析

    原文地址:http://www.jianshu.com/p/870451cb4eb0 背景 作为移动平台的RD,项目开发过程中一项比较重要的甩锅技能——抓包应该大家都比较熟悉了,毕竟有些bug可能是由 ...

  2. web压测工具http_load原理分析

    一.前言 http_load是一款测试web服务器性能的开源工具,从下面的网址可以下载到最新版本的http_load: http://www.acme.com/software/http_load/ ...

  3. 消息队列NetMQ 原理分析1-Context和ZObject

    前言 介绍 NetMQ是ZeroMQ的C#移植版本,它是对标准socket接口的扩展.它提供了一种异步消息队列,多消息模式,消息过滤(订阅),对多种传输协议的无缝访问. 当前有2个版本正在维护,版本3 ...

  4. 消息队列NetMQ 原理分析2-IO线程和完成端口

    消息队列NetMQ 原理分析2-IO线程和完成端口 前言 介绍 目的 IO线程 初始化IO线程 Proactor 启动Procator线程轮询 处理socket 获取超时时间 从完成端口获取处理完的状 ...

  5. Azure WAF防火墙工作原理分析和配置向导

    Azure WAF工作原理分析和配置向导 本文博客地址为:http://www.cnblogs.com/taosha/p/6716434.html ,转载请保留出处,多谢! 本地数据中心往云端迁移的的 ...

  6. 消息队列NetMQ 原理分析3-命令产生/处理和回收线程

    消息队列NetMQ 原理分析3-命令产生/处理和回收线程 前言 介绍 目的 命令 命令结构 命令产生 命令处理 创建Socket(SocketBase) 创建连接 创建绑定 回收线程 释放Socket ...

  7. 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe

    消息队列NetMQ 原理分析4-Socket.Session.Option和Pipe 前言 介绍 目的 Socket 接口实现 内部结构 Session Option Pipe YPipe Msg Y ...

  8. Redis事务原理分析

    Redis事务原理分析 基本应用 在Redis的事务里面,采用的是乐观锁,主要是为了提高性能,减少客户端的等待.由几个命令构成:WATCH, UNWATCH, MULTI, EXEC, DISCARD ...

  9. 消息队列NetMQ 原理分析5-StreamEngine、Encord和Decord

    消息队列NetMQ 原理分析5-StreamEngine,Encord和Decord 前言 介绍 目的 StreamEngine 发送数据 接收数据 流程分析 Encoder V2Encoder V1 ...

随机推荐

  1. 技术分享 | Update更新慢、死锁等问题的排查思路分享

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 一.简介 在开始排错之前我们需要知道 Update 在 MySQL 中的生命周期 ...

  2. Tracer类定义

    这个类主要是用于检测光线是否穿过球体.是核心,所有的碰撞都继承于这个类,书上也阐述了很多.详细就看书. 类定义: #pragma once #ifndef __TRACER_HEADER__ #def ...

  3. 使用.NET简单实现一个Redis的高性能克隆版(三)

    译者注 该原文是Ayende Rahien大佬业余自己在使用C# 和 .NET构建一个简单.高性能兼容Redis协议的数据库的经历. 首先这个"Redis"是非常简单的实现,但是他 ...

  4. CF859E 题解

    分析 我们不妨把这些座位看作是一张图中的节点,把每个人的诉求作为一条边(由[原座位]指向[想去的座位]) 比如,对于样例#1,我们就可以得到这样一张图: 显然,我们有可能会得到多个连通图(比如上面这张 ...

  5. Tomcat启动失败 提示Server Tomcat v7.0 Server at localhost failed to start.六种解决方法

    Tomcat启动失败,提示Server Tomcat v7.0 Server at localhost failed to start 在一次查看自己以前写过的项目中,运行tomcat失败,出现如图提 ...

  6. 如何实现 System.out.println("a") 显示 b

    今天看到一篇文章不用反射,能否交换两个字符串的值. 心想字符串常量在常量池里面,是在就算用了反射也交换不了吧.转念一想,不对,字符串常量虽然本身在常量池里面,但是它依然是个对象,那么 private ...

  7. LuoguP1858 多人背包(DP)

    第\(K\)优解这类问题可在\(DP\)过程中通过添维解决.归并出当前前\(K\)大的解. #include <iostream> #include <cstdio> #inc ...

  8. 10大python加速技巧

    简介 目前非常多的数据竞赛都是提交代码的竞赛,而且加入了时间的限制,这就对于我们python代码的加速非常重要.本篇文章我们介绍在Python中加速代码的一些技巧.可能不是很多,但在一些大的循环或者函 ...

  9. CSS 选择器(二):子代选择器(>)

    后代选择器 后代选择器选择的范围广,范围是当前节点的所有子节点,包括其直接子节点. <div id="app"> <div>items-1 <div& ...

  10. rcu stall 导致的hung 记录

    synchronize_sched 也会在wait_rcu_gp 的长时间等待导致进入hung ,假设rcu没有及时执行的话, 另外,如果rcu积累到一定程度,内存自然就不足了,可能会oom. rcu ...