题面

Bzoj

题解

对于每个节点,我们可以用树链剖分和线段树维护以下信息:

  • 单独在某个点分配$i$个人的最大收益(可以$O(m)$计算)
  • 分配$i$的最大收益(可以$O(m^2)$计算)
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::sort; using std::swap;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 20010, M = 51, T = 65600;
int n, m, q, X = 1 << 16, Y = ~0U >> 1, A, B, Q, op, x, y;
int fa[N], son[N], siz[N], top[N], dfn[N], dep[N], val[N], tim;
int cnt, from[N], to[N], nxt[N];
inline void addEdge(int u, int v) {
to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt;
}
struct P {
ll v[M];
P() { for(int i = 0; i < M; ++i) v[i] = 0; }
P operator + (P b) {
P c;
for(int i = 0; i < M; ++i) c.v[i] = max(v[i], b.v[i]);
return c;
}
P operator * (P b) {
P c;
for(int i = 0; i < M; ++i)
for(int j = 0; j < M - i; ++j)
c.v[i + j] = max(c.v[i + j], v[i] + b.v[j]);
return c;
}
}tmp, a[N], v0[T], v1[T], s0, s1; //读入数据
inline int getint() {
A = ((A ^ B) + B / X + B * X) & Y;
B = ((A ^ B) + A / X + A * X) & Y;
return (A ^ B) % Q;
}
inline void gettmp() {
for(int i = 1; i <= m; ++i) tmp.v[i] = getint();
sort(&tmp.v[1], &tmp.v[m + 1]);
} //线段树
inline void pushup(int o, int lc, int rc) { v0[o] = v0[lc] + v0[rc], v1[o] = v1[lc] * v1[rc]; }
void build(int o = 1, int l = 1, int r = n) {
if(l == r) { v0[o] = v1[o] = a[val[l]]; return ; }
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
build(lc, l, mid), build(rc, mid + 1, r), pushup(o, lc, rc);
}
void modify(int k, int o = 1, int l = 1, int r = n) {
if(l == r) { v0[o] = v1[o] = tmp; return ; }
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
if(k <= mid) modify(k, lc, l, mid);
else modify(k, rc, mid + 1, r);
pushup(o, lc, rc);
}
void query0(int ql, int qr, int o = 1, int l = 1, int r = n) {
if(l >= ql && r <= qr) { s0 = s0 + v0[o]; return ; }
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
if(ql <= mid) query0(ql, qr, lc, l, mid);
if(qr > mid) query0(ql, qr, rc, mid + 1, r);
}
void query1(int ql, int qr, int o = 1, int l = 1, int r = n) {
if(l >= ql && r <= qr) { s1 = s1 * v1[o]; return ; }
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
if(ql <= mid) query1(ql, qr, lc, l, mid);
if(qr > mid) query1(ql, qr, rc, mid + 1, r);
} //树链剖分
void dfs(int u) {
siz[u] = 1, dep[u] = dep[fa[u]] + 1;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; dfs(v), siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs(int u, int t) {
dfn[u] = ++tim, val[tim] = u, top[u] = t;
if(!son[u]) return ; dfs(son[u], t);
for(int i = from[u]; i; i = nxt[i])
if(to[i] != son[u]) dfs(to[i], to[i]);
}
inline void Path(int x, int y) { //dep[y] 始终小于等于 dep[x]
if(x == y) return ;
x = fa[x]; int fx = top[x];
while(fx != top[y]) query0(dfn[fx], dfn[x]), x = fa[fx], fx = top[x];
query0(dfn[y], dfn[x]);
} int main () {
#ifdef OFFLINE_JUDGE
freopen("233.in", "r", stdin);
freopen("233.out", "w", stdout);
#endif
read(n), read(m), read(A), read(B), read(Q);
for(int i = 2; i <= n; ++i)
read(fa[i]), addEdge(fa[i], i);
for(int i = 1; i <= n; ++i) gettmp(), a[i] = tmp;
dfs(1), dfs(1, 1), build(), read(q);
while(q--) {
read(op), read(x);
if(!op) gettmp(), modify(dfn[x]);
else {
read(y);
s0 = s1 = P();
Path(x, y), query1(dfn[x], dfn[x] + siz[x] - 1);
s0 = s0 * s1;
printf("%lld\n", s0.v[m]);
}
}
return 0;
}

Bzoj2164 采矿(线段树+树链剖分)的更多相关文章

  1. [BZOJ2164]采矿【模拟+树链剖分+线段树】

    Online Judge:Bzoj2164 Label:模拟,树链剖分,线段树 题目描述 浩浩荡荡的cg大军发现了一座矿产资源极其丰富的城市,他们打算在这座城市实施新的采矿战略.这个城市可以看成一棵有 ...

  2. 线段树&数链剖分

    傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...

  3. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  4. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  5. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

  6. CF487E Tourists 圆方树、树链剖分

    传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...

  7. BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)

    题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...

  8. 2019.01.08 codeforces 1009F. Dominant Indices(长链剖分)

    传送门 长链剖分模板题. 题意:给出一棵树,设fi,jf_{i,j}fi,j​表示iii的子树中距离点iii距离为jjj的点的个数,现在对于每个点iii要求出使得fif_ifi​取得最大值的那个jjj ...

  9. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

随机推荐

  1. 从零搭建SSM框架(一)搭建工程

    工程结构 一.cnki-parent 1.新建maven project  2.pom.xml <project xmlns="http://maven.apache.org/POM/ ...

  2. ashx误删后,未能创建类型

    描述 今天,因为临时有事儿,需要去一趟其他城市,项目比较赶.所以只能在车上继续敲代码,倒霉的触摸板让我误删一个ashx一般处理程序.好死不死的这个文件的代码还很长. 我的做法是[垃圾桶]→[还原]→V ...

  3. C# 定时执行方法: System.Timers.Timer用法示例

    System.Timers.Timer t = new System.Timers.Timer(5000); //设置时间间隔为5秒        private void Form1_Load(ob ...

  4. 2017-2018-2 20179205《网络攻防技术与实践》Windows攻击实验

    Windows攻击实验 实验描述: 使用Metaspoit攻击MS08-067,提交正确得到远程shell过程的截图(不少于五张). MS08-067漏洞介绍   MS08-067漏洞的全称为&quo ...

  5. shell脚本实现监控shell脚本的执行流程及变量的值

    这篇文章主要介绍了shell脚本实现监控shell脚本的执行流程及变量的值本文使用shell完成对执行过程中条件语句中的变量的变化的监控和整个程序的执行流程的观察功能,需要的朋友可以参考下 很多时候, ...

  6. 生成Word/ATU报表提示 font family not found

    1.先从你本机 C:\Windows\Fonts 拷贝或者网络上下载你想要安装的字体文件(*.ttf文件)到 /usr/share/fonts/chinese/TrueType 目录下(如果系统中没有 ...

  7. aarch64_a2

    asterisk-sounds-core-en_GB-1.5.0-2.fc26.noarch.rpm 2017-02-14 08:24 26K fedora Mirroring Project ast ...

  8. Nginx中worker_connections的问题

    查看日志,有一个[warn]: 3660#0: 20000 worker_connections are more than open file resource limit: 1024 !! 原来安 ...

  9. docker stack 部署 redis

    =============================================== 2019/4/16_第2次修改                       ccb_warlock 更新 ...

  10. Windows Phone 8 获取设备名称

    通过使用Microsoft.Phone.Info.DeviceStatus类,我们可以获取设备的一些信息,如设备厂商,设备名称等.通过Microsoft.Phone.Info.DeviceStatus ...