题目链接

CF662C

题解

行比较少,容易想到将每一列的状态压缩

在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一

所以我们只需求出每一种操作的答案

如果操作的行的集合为\(S\),那么对于状态为\(e\)的列,将会变成\(e \; xor \; S\),同时产生\(e \; xor \; S\)的答案

如果\(s\)的答案记为\(b[s]\),状态为\(s\)的列数量为\(a[s]\)

那么对于操作\(S\),最后的答案为

\[\sum\limits_{i \; xor \; j = S}a[i] \centerdot b[j]
\]

而\(b[s]\)和\(a[s]\)数组都可以预处理出来

记\(N = 2^{20}\)

复杂度为\(O(NlogN)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2100005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
char S[22][100005];
int n,m;
LL A[maxn],B[maxn];
void fwt(LL* a,int n,int f){
for (int i = 1; i < n; i <<= 1)
for (int j = 0; j < n; j += (i << 1))
for (int k = 0; k < i; k++){
LL x = a[j + k],y = a[j + k + i];
a[j + k] = x + y,a[j + k + i] = x - y;
if (f == -1) a[j + k] /= 2,a[j + k + i] /= 2;
}
}
int main(){
n = read(); m = read();
REP(i,n) scanf("%s",S[i] + 1);
REP(j,m){
int s = 0;
REP(i,n) s = s << 1 | (S[i][j] - '0');
A[s]++;
}
int maxv = (1 << n) - 1;
for (int s = 0; s <= maxv; s++){
int cnt = 0;
for (int i = s; i; i >>= 1) cnt += (i & 1);
B[s] = min(cnt,n - cnt);
}
int deg = 1;
while (deg <= maxv) deg <<= 1;
fwt(A,deg,1); fwt(B,deg,1);
for (int i = 0; i < deg; i++) A[i] = A[i] * B[i];
fwt(A,deg,-1);
LL ans = INF;
for (int i = 0; i <= maxv; i++) ans = min(ans,A[i]);
printf("%lld\n",ans);
return 0;
}

CF662C Binary Table 【状压 + FWT】的更多相关文章

  1. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  2. Codeforces.662C.Binary Table(状压 FWT)

    题目链接 \(Description\) 给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转.求操作后最少剩下多少个\(1\). \(n\le ...

  3. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  4. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...

  5. CF662C Binary Table (快速沃尔什变换FWT)

    题面 题解 我们会发现,如果单独的一列或一行,它的答案是O1确定的,如果确定了每一行是否变换,那么最后的答案也就简单了许多, 如果确定了行的变换状压下来是x(即x的i位表示第i行是否变换,理解就行), ...

  6. CF662C Binary Table 枚举 FWT

    题面 洛谷题面 (虽然洛谷最近有点慢) 题解 观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转. 对于第i列,我们将它代表的01串提取出来,表示为\( ...

  7. CF662C Binary Table (FWT板题)

    复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=i​f[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...

  8. [CF662C] Binary Table(FWT)

    题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:

  9. [CF662C]Binary Table

    luogu 题意 你有一个\(n*m\)的\(01\)矩阵.你可以把任意一行或者一列的\(01\)取反.求矩阵中最少的\(1\)的数量. \(n\le20,m\le10^5\) sol 很自然地有一个 ...

随机推荐

  1. Spring中的数据库事物管理

    Spring中的数据库事物管理 只要给方法加一个@Transactional注解就可以了 例如:

  2. Centos 7 安装Zabbix

    一.环境准备与说明: 1.zabbix server 版本:3.4.12 ,https://www.zabbix.com/download 2.zabbix agent版本:3.4.14,https: ...

  3. ats编译中增加透明度 选项

    在大多数情况下,如果环境支持透明度,则configure将自动启用它.对于其他环境,可能需要 配置configure 选项. --enable-posix-cap 这实现了POSIX功能,这是透明度所 ...

  4. passwd命令详解

    基础命令学习目录首页 passwd命令用于设置用户的认证信息,包括用户密码.密码过期时间等.系统管理者则能用它管理系统用户的密码.只有管理者可以指定用户名称,一般用户只能变更自己的密码. 语法 pas ...

  5. Windows搭建python开发环境

    python你不去认识它,可能没什么,一旦你认识了它,你就会爱上它 基本概念Python(英语发音:/ˈpaɪθən/), 是一种面向对象.解释型计算机程序设计语言,由Guido van Rossum ...

  6. 第14讲:嵌入式SQL语言(基本技巧)

    一.交互式SQL的局限 & 嵌入式SQL的必要性 专业人员(如DBA)可以熟练地运用交互式SQL语言,但普通用户却不是那么容易上手,所以需要通过数据库应用程序来使用数据库.编写一个可以与数据库 ...

  7. Scrum Meeting 4 -2014.11.8

    开始了apec的放假,希望大家能处理好工作与休息的时间分配,不要玩疯了啊. 各任务都开始实现了自己的算法,需要部署的服务器我也进去看了看情况,希望最后能部署成功. 最近发现的一些关于上一届实现的问题, ...

  8. java 1.7 1.8新特性

    在JDK1.7的新特性方面主要有下面几方面的增强:1.jdk7语法上1.1二进制变量的表示,支持将整数类型用二进制来表示,用0b开头.1.2 Switch语句支持string类型1.3 Try-wit ...

  9. IHttpModule理解-知识补充

    文章:IHttpModule的那些事 可以自定义类实现IHttpModule接口,然后实现接口方法Init,Init方法可以得到HttpApplication 的实例化对象. 然后给对象的事件的注册各 ...

  10. 为什么使彩色图变灰RGB的权重会固定(R:0.299 G:0.587 B:0.114)?

    人眼对绿色的敏感度最高,对红色的敏感度次之,对蓝色的敏感度最低,因此使用不同的权重将得到比较合理的灰度图像.根据实验和理论推导得出以下数值 R: 0.299. G:  0.587. B: 0.114.