题目链接

CF662C

题解

行比较少,容易想到将每一列的状态压缩

在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一

所以我们只需求出每一种操作的答案

如果操作的行的集合为\(S\),那么对于状态为\(e\)的列,将会变成\(e \; xor \; S\),同时产生\(e \; xor \; S\)的答案

如果\(s\)的答案记为\(b[s]\),状态为\(s\)的列数量为\(a[s]\)

那么对于操作\(S\),最后的答案为

\[\sum\limits_{i \; xor \; j = S}a[i] \centerdot b[j]
\]

而\(b[s]\)和\(a[s]\)数组都可以预处理出来

记\(N = 2^{20}\)

复杂度为\(O(NlogN)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2100005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
char S[22][100005];
int n,m;
LL A[maxn],B[maxn];
void fwt(LL* a,int n,int f){
for (int i = 1; i < n; i <<= 1)
for (int j = 0; j < n; j += (i << 1))
for (int k = 0; k < i; k++){
LL x = a[j + k],y = a[j + k + i];
a[j + k] = x + y,a[j + k + i] = x - y;
if (f == -1) a[j + k] /= 2,a[j + k + i] /= 2;
}
}
int main(){
n = read(); m = read();
REP(i,n) scanf("%s",S[i] + 1);
REP(j,m){
int s = 0;
REP(i,n) s = s << 1 | (S[i][j] - '0');
A[s]++;
}
int maxv = (1 << n) - 1;
for (int s = 0; s <= maxv; s++){
int cnt = 0;
for (int i = s; i; i >>= 1) cnt += (i & 1);
B[s] = min(cnt,n - cnt);
}
int deg = 1;
while (deg <= maxv) deg <<= 1;
fwt(A,deg,1); fwt(B,deg,1);
for (int i = 0; i < deg; i++) A[i] = A[i] * B[i];
fwt(A,deg,-1);
LL ans = INF;
for (int i = 0; i <= maxv; i++) ans = min(ans,A[i]);
printf("%lld\n",ans);
return 0;
}

CF662C Binary Table 【状压 + FWT】的更多相关文章

  1. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  2. Codeforces.662C.Binary Table(状压 FWT)

    题目链接 \(Description\) 给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转.求操作后最少剩下多少个\(1\). \(n\le ...

  3. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  4. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...

  5. CF662C Binary Table (快速沃尔什变换FWT)

    题面 题解 我们会发现,如果单独的一列或一行,它的答案是O1确定的,如果确定了每一行是否变换,那么最后的答案也就简单了许多, 如果确定了行的变换状压下来是x(即x的i位表示第i行是否变换,理解就行), ...

  6. CF662C Binary Table 枚举 FWT

    题面 洛谷题面 (虽然洛谷最近有点慢) 题解 观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转. 对于第i列,我们将它代表的01串提取出来,表示为\( ...

  7. CF662C Binary Table (FWT板题)

    复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=i​f[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...

  8. [CF662C] Binary Table(FWT)

    题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:

  9. [CF662C]Binary Table

    luogu 题意 你有一个\(n*m\)的\(01\)矩阵.你可以把任意一行或者一列的\(01\)取反.求矩阵中最少的\(1\)的数量. \(n\le20,m\le10^5\) sol 很自然地有一个 ...

随机推荐

  1. linux下实现压测-html报表生成-控制台参数优化【jmeter】

    jmeter - 单机压测 - 命令行模式-html报表生成-控制台参数优化 一/ 准备工作 1.压力机安装并配置好 jdk 2.调试好程序脚本 再上传到 linux下 3.进入jmeter  bin ...

  2. List集合中的对象进行排序

    类A: public class A implements Comparable<A>{ private Integer id; private String name; public A ...

  3. 高可用OpenStack(Queen版)集群-15.Glance&Cinder集成Ceph

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  4. 打包一个传统的ASP.NET web app作为Docker镜像

    (1)针对NerdDinner应用的Dockerfile内容如下 PS E:\DockeronWindows\Chapter02\ch02-nerd-dinner> cat .\Dockerfi ...

  5. BP神经网络算法推导

    目录 前置知识 梯度下降法 激活函数 多元复合函数求偏导的相关知识 正向计算 符号定义 输入层 隐含层 输出层 误差函数 反向传播 输出层与隐含层之间的权值调整 隐含层与输入层之间权值的调整 计算步骤 ...

  6. Hyperledger Fabric(v1.2.0)代码分析1——channel创建

    Hyperledger Fabric(v1.2.0)代码分析1--channel创建 0. e2e_cli Hyperledger Fabric提供了一个e2e的例子,该例中创建了一个基础的区块链网络 ...

  7. Centos7.4简单安装使用gitlab+maven+jenkins实现java代码的持续集成部署

    1.工具的简单介绍 gitlab--源代码版本管理控制工具 maven--java代码编译构建工具 jenkins--基于java开发的自动化持续集成部署工具 sonar--代码质量管理工具 2.gi ...

  8. SecureCRT SSH连接一直提示密码错误

    这是解决方法:  http://www.linuxidc.com/Linux/2016-09/134925.htm

  9. Scrum Meeting 5 -2014.11.11

    放假过掉一大半.大家都努力赶着进度,算法实现基本完成.可能还有些细小的改动,但也可以统一进入测试阶段了. 今天叫了部分在校人员开了个小会.任务决定以测试为主,同时开始进行服务器的部署. 在之前尝试服务 ...

  10. Teamwork(The eighth day of the team)

    在经过算是蛮艰辛的努力后吧,我们终于有了一点点成果.虽然还离理想中的蛮遥远的,但是我们相信,虽然我们走得很慢,但是我们一直都会坚持前进.