MT【148】凸数列
(2018浙江省赛13题)
设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$
证明:$x_{1009}x_{1010}\le1.$

证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项都变为原来的相反数即可.一正一负的情况下,$x_{1009}x_{1010}<0\le1$,显然)
记$a_n=\ln x_n,(n=1,2\cdots,2018)$.两边取对数,条件变为$2a_{n+1}\le a_{n}+a_{n+2},\sum\limits_{k=1}^{2018}{a_k}=0$,只需证明:$a_{1009}+a_{1010}\le0.\textbf{由凸函数性质}:$
$$a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$$
则$a_{1009}+a_{1010}\le a_1+a_{2018},a_{1009}+a_{1010}\le a_2+a_{2017},\cdots,a_{1009}+a_{1010}\le a_{1009}+a_{1010}$故$1009(a_{1009}+a_{1010})\le\sum\limits_{k=1}^{2018}{a_k}=0$, 得证.
评论:$\{a_{n+1}-a_n\}$单调不减,则$\{a_n\}$称为凸数列,它有以下性质:
$1.a_n+a_{n+2}\ge 2a_{n+1}$
$2.a_n-a_m\ge(n-m)(a_{m+1}-a_m)$
$3.\dfrac{a_n-a_m}{n-m}\ge\dfrac{a_m-a_k}{m-k}(1\le k<m<n)$
$4.a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$
MT【148】凸数列的更多相关文章
- MT【156】特例$a_n=\dfrac{6}{\pi n^2}$
设无穷非负数列$\{a_n\}$满足$a_n+a_{n+2}\ge2 a_{n+1},\sum\limits_{i=1}^{n}{a_i}\le1$,证明:$0\le a_n-a_{n+1}\le\d ...
- PHP如何使用GeoIP数据库
1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【312】特征根法求数列通项
(2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是( )A ...
- MT【307】周期数列
(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...
- MT【206】证明整数数列
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...
- MT【150】源自斐波那契数列
(清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...
- MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
随机推荐
- python代码异常范围检查方法(非常实用)
对于python编程的代码,如果需要进行相应的检查其中的错误或者异常,并且确定出现异常语句的大致范围,主要有以下四种方法: 1.第一种方法:遇错即止(告知原因) try ......(所需检查语句) ...
- Educational Codeforces Round 61 (Rated for Div. 2) E. Knapsack
非常经典的dp题,因为1至8的最大公约数是840,任何一个数的和中840的倍数都是可以放在一起算的, 所以我只需要统计840*8的值(每个数字(1-8)的sum%840的总和),剩下都是840的倍数 ...
- Oracle中解析XMLType格式字段
背景:项目从某数据交换平台获取XML数据,以Oracle的XMLType格式保存在数据库字段中,需要建立触发器.存储过程,在保存数据时解析XML字段,将数据写入其他业务表中. 参考资料:Oracle的 ...
- Catlike学习笔记(1.2)-使用Unity画函数图像
『Catlike系列教程』第二篇来了~今天周六,早上(上午11点)醒来去超市买了一周的零食回来以后就玩了一整天游戏非常有负罪感.现在晚上九点天还亮着感觉像下午7点左右的样子好像还不是很晚...所以就写 ...
- python-两个筛子数据可视化(直方图)
""" 作者:zxj 功能:模拟掷骰子,两个筛子数据可视化 版本:3.0 日期:19/3/24 """ import random impo ...
- nodejs ejs模板数据库操作
1. 建立数据连接setting.js var settings = {}; settings.db = { host: 'localhost', user: 'root', password: '1 ...
- Django_WSGIRequest对象
WSGIRequest对象 Django在接收到http请求之后,会根据http请求携带的参数以及报文信息创建一个WSGIRequest对象,并且作为视图函数第一个参数传给视图函数.这个参数就是dja ...
- js为一个对象Object添加一个新的属性和值
1, var obj = {}; //或者 var obj=new Object(); var key = "name"; var value = "张三丰" ...
- 第三周linux学习
实验二 Linux下C语言编程基础 一.实验目的 1. 熟悉Linux系统下的开发环境 2. 熟悉vi的基本操作 3. 熟悉gcc编译器的基本原理 4. 熟练使用gcc编译器的常用选项 5 .熟练使用 ...
- java学习de路线建议
我想谈一谈我的一些关于网页学习的小感悟吧.之所以是写这个的原因完全是想告诉现在还处在网页学习的初始阶段的同学一些我学习走过的弯路,但我说的也仅是我个人的理解,毕竟我只能是JavaWeb开发的新手,所以 ...