MT【148】凸数列
(2018浙江省赛13题)
设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$
证明:$x_{1009}x_{1010}\le1.$

证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项都变为原来的相反数即可.一正一负的情况下,$x_{1009}x_{1010}<0\le1$,显然)
记$a_n=\ln x_n,(n=1,2\cdots,2018)$.两边取对数,条件变为$2a_{n+1}\le a_{n}+a_{n+2},\sum\limits_{k=1}^{2018}{a_k}=0$,只需证明:$a_{1009}+a_{1010}\le0.\textbf{由凸函数性质}:$
$$a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$$
则$a_{1009}+a_{1010}\le a_1+a_{2018},a_{1009}+a_{1010}\le a_2+a_{2017},\cdots,a_{1009}+a_{1010}\le a_{1009}+a_{1010}$故$1009(a_{1009}+a_{1010})\le\sum\limits_{k=1}^{2018}{a_k}=0$, 得证.
评论:$\{a_{n+1}-a_n\}$单调不减,则$\{a_n\}$称为凸数列,它有以下性质:
$1.a_n+a_{n+2}\ge 2a_{n+1}$
$2.a_n-a_m\ge(n-m)(a_{m+1}-a_m)$
$3.\dfrac{a_n-a_m}{n-m}\ge\dfrac{a_m-a_k}{m-k}(1\le k<m<n)$
$4.a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$
MT【148】凸数列的更多相关文章
- MT【156】特例$a_n=\dfrac{6}{\pi n^2}$
设无穷非负数列$\{a_n\}$满足$a_n+a_{n+2}\ge2 a_{n+1},\sum\limits_{i=1}^{n}{a_i}\le1$,证明:$0\le a_n-a_{n+1}\le\d ...
- PHP如何使用GeoIP数据库
1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【312】特征根法求数列通项
(2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是( )A ...
- MT【307】周期数列
(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...
- MT【206】证明整数数列
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...
- MT【150】源自斐波那契数列
(清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...
- MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
随机推荐
- Kickstart Round H 2018
打了ks好久都没有更新 诶,自己的粗心真的是没救了,A题大数据都能错 A #include <iostream> #include <cstdio> #include < ...
- 007 --MySQL索引底层实现原理
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构.提取句子主干,就可以得到索引的本质:索引是数据结构. 我们知道,数据库查询是数据库的最主要功能之一.我们都希望查 ...
- 帝国后端php通用Api接口
先来看一下api数据接口和那些小程序之间的关系,如下面的描述,百度小程序,微信小程序,轻应用,app像这些我们都称为终端小应用.api提供数据:会为各终端小应用提供统一的数据格式.客户小应用,从api ...
- Redis源码阅读(六)集群-故障迁移(下)
Redis源码阅读(六)集群-故障迁移(下) 最近私人的事情比较多,没有抽出时间来整理博客.书接上文,上一篇里总结了Redis故障迁移的几个关键点,以及Redis中故障检测的实现.本篇主要介绍集群检测 ...
- Nginx反向代理负载均衡配置
1.反向代理概述 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给internet上请求 ...
- kubeadm源码修改证书时间 -1.13
编译后~ 链接:https://pan.baidu.com/s/1ofLX1Sv0ZF2yjkJdqf-6rw 提取码:cnbd 已统一与CA证书都是10年 已测试 适用于k8s 1.10 至 1.1 ...
- impala 使用记录
在命令行里面直接输入类似下面的语句,就可以执行impala sql语句. impala-shell -q "select * from xxxc limit 10;" 当用pyth ...
- SmartRaiden 和 Lighting Network 进行去中心化跨链原子资产交换
作者介绍 虫洞社区·签约作者 steven bai 前言 如果能够进行以太坊和比特币跨链原子资产交换,是不是一件很酷的事情? 目前链下的扩容方式有很多,最广为人知的就是比特币的闪电网络和以太坊的雷电网 ...
- 20172321 2017-2018-2《Java程序设计》第三周学习总结
20172321 2017-2018-2<Java程序设计>第三周学习总结 教材学习内容总结 第三章要点: 要点1 :String类.Random类.Math类和枚举型,这几个是很有用的并 ...
- 第五周作业总结(内含用Junit测试ArrayStack和LinkedStack课堂练习报告)
---恢复内容开始--- 学号 20162310<程序设计与数据结构>第五周学习总结 教材学习内容总结 集合分为线性集合(集合中的元素排成一行)和非线性集合(按不同于一行的方式来组织元素, ...