(2018浙江省赛13题)

设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$
证明:$x_{1009}x_{1010}\le1.$


证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项都变为原来的相反数即可.一正一负的情况下,$x_{1009}x_{1010}<0\le1$,显然)
记$a_n=\ln x_n,(n=1,2\cdots,2018)$.两边取对数,条件变为$2a_{n+1}\le a_{n}+a_{n+2},\sum\limits_{k=1}^{2018}{a_k}=0$,只需证明:$a_{1009}+a_{1010}\le0.\textbf{由凸函数性质}:$
$$a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$$
则$a_{1009}+a_{1010}\le a_1+a_{2018},a_{1009}+a_{1010}\le a_2+a_{2017},\cdots,a_{1009}+a_{1010}\le a_{1009}+a_{1010}$故$1009(a_{1009}+a_{1010})\le\sum\limits_{k=1}^{2018}{a_k}=0$, 得证.

评论:$\{a_{n+1}-a_n\}$单调不减,则$\{a_n\}$称为凸数列,它有以下性质:

$1.a_n+a_{n+2}\ge 2a_{n+1}$

$2.a_n-a_m\ge(n-m)(a_{m+1}-a_m)$
$3.\dfrac{a_n-a_m}{n-m}\ge\dfrac{a_m-a_k}{m-k}(1\le k<m<n)$
$4.a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$

MT【148】凸数列的更多相关文章

  1. MT【156】特例$a_n=\dfrac{6}{\pi n^2}$

    设无穷非负数列$\{a_n\}$满足$a_n+a_{n+2}\ge2 a_{n+1},\sum\limits_{i=1}^{n}{a_i}\le1$,证明:$0\le a_n-a_{n+1}\le\d ...

  2. PHP如何使用GeoIP数据库

    1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...

  3. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  4. MT【312】特征根法求数列通项

    (2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是(      )A ...

  5. MT【307】周期数列

    (2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...

  6. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  7. MT【150】源自斐波那契数列

    (清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...

  8. MT【121】耐克数列的估计

    已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...

  9. MT【311】三角递推数列

    已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...

随机推荐

  1. 开源ETL工具kettle系列之常见问题

    开源ETL工具kettle系列之常见问题 摘要:本文主要介绍使用kettle设计一些ETL任务时一些常见问题,这些问题大部分都不在官方FAQ上,你可以在kettle的论坛上找到一些问题的答案 1. J ...

  2. PHP处理表单数据的一个安全回顾(记录教训)

    曾经看过一个安全文章中写过这么一条 表单输入数据要做 htmlspecialchars_decode 表单输出数据要做htmlspecialchars 当时还不是很理解为什么,自己也没遇到问题,所以就 ...

  3. Tomcat部署与使用

    Tomcat简介 Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人共同开发 ...

  4. 解读Python编程中的命名空间与作用域

    变量是拥有匹配对象的名字(标识符).命名空间是一个包含了变量名称们(键)和它们各自相应的对象们(值)的字典.一个Python表达式可以访问局部命名空间和全局命名空间里的变量.如果一个局部变量和一个全局 ...

  5. ubuntu16更新源

    http://blog.csdn.net/fengyuzhiren/article/details/54844870

  6. leetcode 184 部门工资最高的员工

    题目描述:Employee 表包含所有员工信息,每个员工有其对应的 Id, salary 和 department Id. Department 表包含公司所有部门的信息. 编写一个 SQL 查询,找 ...

  7. (第十一周)约跑APP测试报告

    项目名称:约跑App 用户需求规格说明书URL:http://www.cnblogs.com/liquan/p/6071804.html 组长博客URL:http://www.cnblogs.com/ ...

  8. Teamproject Week7 --Scrum Meeting #1 2014.10.28

    这是团队的第一次会议,具体议题如下: 1)我们明确了团队成员的职责所需: PM职责:根据项目范围.质量.时间与成本的综合因素的考虑,进行项目的总体规划与阶段计划.  控制项目组各成员的工作进度,即时了 ...

  9. 面向对象OO第5-7次作业总结

    面向对象OO第5-7次作业总结 学习OO七周了,深切的感受到了这门课程的不友好.前三次作业能够算是勉强地通过了,但是从第五次作业开始就完全GG了.这三次作业,从多线程电梯开始,然后文件监控,然后到出租 ...

  10. iOS开发学习-类似微信聊天消息中的电话号码点击保存到通讯录中的功能

    类似微信聊天消息中的电话号码点击保存到通讯录中的功能,ABAddress的实现在iOS9中是不能正常使用的,点击完成后,手机会非常的卡,iOS9之后需要使用Contact新提供的方法来实现该功能.快捷 ...