Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

Sample Input

【输入样例1】

4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17

【输入样例2】

3 1
1 2 1 1

Sample Output

【输出样例1】

32

【样例说明1】

如果小E走路径1→2→4,需要携带19+15=34个守护精灵;

如果小E走路径1→3→4,需要携带17+17=34个守护精灵;

如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;

如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。

综上所述,小E最少需要携带32个守护精灵。

【输出样例2】

-1

【样例说明2】

小E无法从1号节点到达3号节点,故输出-1。

HINT

2<=n<=50,000

0<=m<=100,000

1<=ai ,bi<=50,000

Solution

LCT

看这道题,就是维护MST嘛

但是有两个量怎么办?

离线,把边按照 \(a\) 的权值排序,枚举 \(a\) 的值,把边权小于等于当前枚举的值的边加入LCT,而LCT维护 \(b\) 的MST

这样就做完了(考虑了每一个 \(a\) 的情况下的最优解,取个 \(min\) 就是答案)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=50000+10,MAXM=100000+10,inf=0x3f3f3f3f;
int n,m,ans=inf,limita,fa[MAXN];
struct edge{
int u,v,a,b;
inline bool operator < (const edge &A) const {
return a<A.a;
};
};
edge side[MAXM];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN+MAXM][2],fa[MAXN+MAXM],rev[MAXN+MAXM],Mx[MAXN+MAXM],id[MAXN+MAXM],val[MAXN+MAXM],stack[MAXN+MAXM],cnt;
inline void init()
{
memset(Mx,0,sizeof(Mx));
memset(id,0,sizeof(id));
memset(ch,0,sizeof(ch));
memset(fa,0,sizeof(fa));
memset(rev,0,sizeof(rev));
}
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
Mx[x]=val[x],id[x]=x;
if(Mx[lc(x)]>Mx[x])Mx[x]=Mx[lc(x)],id[x]=id[lc(x)];
if(Mx[rc(x)]>Mx[x])Mx[x]=Mx[rc(x)],id[x]=id[rc(x)];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline int findroot(int x)
{
access(x);splay(x);
while(lc(x))pushdown(x),x=lc(x);
splay(x);
return x;
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);
if(findroot(y)!=x)fa[x]=y;
}
inline void cut(int x,int y)
{
makeroot(x);
if(findroot(y)==x&&fa[y]==x&&!lc(y))lc(x)=fa[y]=0,pushup(x);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)fa[i]=i;
T.init();
for(register int i=1;i<=m;++i)
{
read(side[i].u),read(side[i].v),read(side[i].a),read(side[i].b);
chkmax(limita,side[i].a);
}
std::sort(side+1,side+m+1);
for(register int a=1,sp=1;a<=limita;++a)
{
while(sp<=m&&side[sp].a<=a)
{
int x=found(side[sp].u),y=found(side[sp].v);
if(x!=y)
{
fa[x]=y;
T.val[sp+n]=side[sp].b;
T.link(sp+n,side[sp].u),T.link(sp+n,side[sp].v);
}
else
{
T.split(side[sp].u,side[sp].v);
int so=T.id[side[sp].v],sn=n+sp;
if(side[sp].b<T.Mx[side[sp].v])
{
T.val[sn]=side[sp].b;
T.cut(so,side[so-n].u);T.cut(so,side[so-n].v);
T.link(sn,side[sp].u);T.link(sn,side[sp].v);
}
}
++sp;
}
if(found(1)==found(n))T.split(1,n),chkmin(ans,a+T.Mx[n]);
}
if(ans==inf)write(-1,'\n');
else write(ans,'\n');
return 0;
}

【刷题】BZOJ 3669 [Noi2014]魔法森林的更多相关文章

  1. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  2. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  3. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  4. bzoj 3669: [Noi2014]魔法森林 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec  ...

  5. bzoj 3669: [Noi2014]魔法森林 -- 动点spfa

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...

  6. 图论 BZOJ 3669 [Noi2014]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  7. bzoj 3669: [Noi2014] 魔法森林 LCT版

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  8. BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  9. bzoj 3669: [Noi2014]魔法森林(并查集+LCT)

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

随机推荐

  1. Unity中使用C#实现UDP广播

    没有系统的学习过网络,想做联机游戏还真是费劲,想做在局域网内实现自动搜索服务器的功能,然后就想到了使用UDP进行广播,把服务器的信息广播给每一个玩家. Socket udpSocket = new S ...

  2. <数据结构系列1>封装自己的数组——手写动态泛型数组(简化版ArrayList)

    哈哈,距离上一次写博客已经快过去半个月了,这这这,好像有点慢啊,话不多说,开始我们的手写动态泛型数组 首先是我们自己写一个自己的动态数组类,代码如下所示: public class Array< ...

  3. 前端常见算法面试题之 - 重建二叉树[JavaScript解法]

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列[1,2,4,7,3,5,6,8],和中序遍历序列[4,7 ...

  4. 高可用OpenStack(Queen版)集群-13.分布式存储Ceph

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  5. 基于tensorflow实现mnist手写识别 (多层神经网络)

    标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...

  6. oracle查看用户表

    select table_name from user_tables;

  7. Redux和React-Redux的实现(二):Provider组件和connect的实现

    接着上一篇讲,上一篇我们实现了自己的Redux和介绍了React的context以及Provider的原理. 1. Provider组件的实现 Provider组件主要有以下下两个作用 在整个应用上包 ...

  8. 团队博客作业week1——成员介绍

    我们小组的成员由六人组成,其中包括一名七班的韩国同学. 1.玉钟焕同学 玉钟焕是七班的同学.由于老师为了让我们尽早体验与不熟悉的同学共同工作的环境而提出团队需要跨行政班.于是我们便邀请钟焕同学加入我们 ...

  9. 第二阶段Sprint2

    昨天:讨论冲刺阶段,目标,任务认领 今天:查看资料,开始视频录制部分的代码实现 遇到的问题:不能暂停后继续录制,只能直接结束

  10. spring冲刺第六天

    昨天编写地图代码,完善地图界面,使其变得美观. 今天把地图界面初步完成,和其他团队成员的成果进行结合,整合人物和地图代码. 遇到的问题:在整合时遇到的问题比较多,今天没有整合成功.