题目大意:给你一个字符串$s$和字符串$w$,字符集为${A,T,C,G}$,你要在字符串$s$中选出一个与$w$长度相同的子串,使得这两个串的差异度最小。

两个字符$c1$,$c2$的差异度为给定的$c[c1][c2]$。

字符串长度$≤2*10^5$。

$FFT$套路题。

我们将串$w$翻转。

设$p[i]$为$s$中子串$s[i-|w|+1.......i]$与$w$的差异度。

显然$p[i]=\sum_{j=0}^{i} c[s[j]][w[i-j]]$。(此处的$w$是翻转后的)

显然的卷积形式。

五次$FFT$即可。

 #include<bits/stdc++.h>
#define M (1<<19)
#define PI acos(-1)
#define INF 19890604
using namespace std; struct cp{
double i,r; cp(){i=r=;}
cp(double rr,double ii){i=ii;r=rr;}
friend cp operator +(cp a,cp b){return cp(a.r+b.r,a.i+b.i);}
friend cp operator -(cp a,cp b){return cp(a.r-b.r,a.i-b.i);}
friend cp operator *(cp a,cp b){return cp(a.r*b.r-a.i*b.i,a.r*b.i+a.i*b.r);}
friend cp operator /(cp a,double b){return cp(a.r/b,a.i/b);}
int num(){return (int)(i+0.499)/;}
}a[M],b[M],c[M],d[M],ans[M]; void change(cp a[],int len){
for(int i=,j=;i<len-;i++){
if(i<j) swap(a[i],a[j]);
int k=len>>;
while(j>=k) j-=k,k>>=;
j+=k;
}
}
void FFT(cp a[],int len,int on){
change(a,len);
for(int h=;h<=len;h<<=){
cp wn=cp(cos(*on*PI/h),sin(*on*PI/h));
for(int j=;j<len;j+=h){
cp w=cp(,);
for(int k=j;k<(j+(h>>));k++){
cp u=a[k],t=w*a[k+(h>>)];
a[k]=u+t; a[k+(h>>)]=u-t;
w=w*wn;
}
}
}
if(on==-) for(int i=;i<len;i++) a[i]=a[i]/len;
} int D[][]={};
int get(char c){
if(c=='A') return ;
if(c=='T') return ;
if(c=='C') return ;
if(c=='G') return ;
} char s[M]={},w[M]={};
int n,m;
int main(){
scanf("%s%s",s,w); n=strlen(s); m=strlen(w);
for(int i=;i<;i++) scanf("%d",D[]+i);
for(int i=;i<n;i++) s[i]=get(s[i]);
for(int i=;i<m;i++) w[i]=get(w[i]);
reverse(w,w+m);
for(int i=;i<n;i++){
if(s[i]==) a[i].i=;
if(s[i]==) b[i].i=;
if(s[i]==) c[i].i=;
if(s[i]==) d[i].i=;
}
for(int i=;i<m;i++){
a[i].r=D[][w[i]];
b[i].r=D[][w[i]];
c[i].r=D[][w[i]];
d[i].r=D[][w[i]];
}
int len=; while(len<n+m) len<<=;
FFT(a,len,); FFT(b,len,); FFT(c,len,); FFT(d,len,);
for(int i=;i<len;i++){
ans[i]=a[i]*a[i]+b[i]*b[i]+c[i]*c[i]+d[i]*d[i];
}
FFT(ans,len,-);
int minn=INF;
for(int i=m-;i<n;i++)
minn=min(minn,ans[i].num());
cout<<minn<<endl;
}

【xsy1154】 DNA配对 FFT的更多相关文章

  1. [TJOI2017]DNA (FFT)

    [Luogu3763] FFT做字符串匹配即可,详见代码 // luogu-judger-enable-o2 #include<cstdio> #include<cstring> ...

  2. MIT molecular Biology 笔记11 位点特异性重组 和 DNA转座

    位点特异性重组 和 DNA转座 视频 https://www.bilibili.com/video/av7973580/ 教材 Molecular biology of the gene 7th ed ...

  3. Hairpin|Bulge|Loop|假结|共变化(进化)|单序列预测|snRNA|snoRNA|siRNA|microRNA|piRNA|LncRNA|antisense RNAs|cis-NATs|trans-NATs|假基因|环形RNA

    生物信息学 GU也可以配对,即“wobble” pairing GU. Hairpin发夹结构,最少不能少于3个碱基.没有配对 Bulge 单侧配对 Loop双侧配对 假结,游离的leading ed ...

  4. AC日记——配对碱基链 openjudge 1.7 07

    07:配对碱基链 总时间限制:  1000ms 内存限制:  65536kB 描述 脱氧核糖核酸(DNA)由两条互补的碱基链以双螺旋的方式结合而成.而构成DNA的碱基共有4种,分别为腺瞟呤(A).鸟嘌 ...

  5. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  6. OpenJudge计算概论-配对碱基链

    /*===================================== 配对碱基链 总时间限制: 1000ms 内存限制: 65536kB 描述 脱氧核糖核酸(DNA)由两条互补的碱基链以双螺 ...

  7. POJ C程序设计进阶 编程题#2: 配对碱基链

    编程题#2: 配对碱基链 来源: POJ (Coursera声明:在POJ上完成的习题将不会计入Coursera的最后成绩.) 注意: 总时间限制: 1000ms 内存限制: 65536kB 描述 脱 ...

  8. hdu 4609 3-idiots <FFT>

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 给定 N 个正整数, 表示 N 条线段的长度, 问任取 3 条, 可以构成三角形的概率为多 ...

  9. wikioi 3132 高精度乘法(FFT)

    第一次学FFT,先膜拜一下法法塔大神ORZ 关于FFT的话,有一篇博文特别赞http://z55250825.blog.163.com/blog/static/15023080920143127465 ...

随机推荐

  1. ubuntu 'yuan' update

    #  tsinghua  university deb http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiv ...

  2. C语言dos程序源代码分享(进制转换器)

    今天给大家分享一个dos程序的源代码 这个程序是本人在学习中的经验分享 如果有问题或者建议,欢迎大家一起交流 源代码: /*本程序为一个进制转换器 本程序不作为商业用途,完全为技术交流 喜欢C语言的同 ...

  3. 【DBCP】DBCP基本配置和重连配置+spring中配置

    最近在看一些dbcp的相关内容,顺便做一下记录,免得自己给忘记了.   1. 引入dbcp (选择1.4) <dependency> <groupId>com.alibaba. ...

  4. 2018.09.01 独立集(树形dp)

    描述 给定一颗树(边权为1),选取一个节点子集,使得该集合中任意两个节点之间的距离都大于K.求这个集合节点最多是多少 输入 第一行是两个整数N,K 接下来是N-1行,每行2个整数x,y,表示x与y有一 ...

  5. 2018.08.22 codves2370 小机房的树(lca+树上差分)

    传送门 一道板子题. 直接树链剖分维护树上lca然后差分就行了. 代码: #include<bits/stdc++.h> #define N 50005 #define lc (p< ...

  6. 如何设置vim中tab键缩进---配置初始化设置

    转载自:http://blog.51cto.com/xuding/1725376:加了一些补充说明 问题: Linux系统下,Tab键默认为8个字符,需呀将其修改为4个字符的方式使用 步骤: 1.在用 ...

  7. 如何在eclipse的配置文件里指定jdk路径

    转载自:https://blog.csdn.net/gnail_oug/article/details/51925804:个人做了些小修改. 今天下载了eclipse4.6版本,打开时报Version ...

  8. (线段树)Just a Hook -- hdu -- 1689

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1698 思路: 我的想法很简单,像上一题一样从后面向前面来算,前面已经覆盖的,后面自然不能再来计算了,具体 ...

  9. C++ 中数组做参数的分析

    C++ 中数组做参数的分析 1.数组降价问题? "数组引用"以避免"数组降阶",数组降阶是个讨厌的事,这在C语言中是个无法解决的问题,先看一段代码,了解什么是& ...

  10. node express session

    在express4.0版本以上,需要单独增加session模块:express-session:https://www.npmjs.com/package/express-session 具体做法是, ...