1. 摘要

本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法。

作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深的隐藏层陷入到饱和区域。

作者提出了一个新的参数初始化方法,称之为 Xavier 初始化,来帮助深度网络更快地收敛。

2. 激活函数的作用以及训练过程中的饱和现象

2.1. 三种激活函数

\[Tanh(x)=\frac{1-e^{-x}}{1+e^{-x}}\]
\[Sigmoid(x)=\frac{1}{1+e^{-x}}\]
\[Softsign(x)=\frac{x}{1+|x|}\]

2.2. Sigmoid 函数

通过观察训练过程中每一个隐藏层激活值的均值和方差,我们可以发现第 4 层的激活值很快就进入到了饱和区域,非常接近于 0。由于 Sigmoid 函数在接近于 0 的时候梯度很小,这样的话反向传播过程就会学习得很慢,虽然最终网络会慢慢离开饱和区域,但往往学到的解也不是最优的。

2.3. Tanh 函数和 Softsign 函数

由于 Tanh 函数和 Softsign 函数接近于 0 的时候梯度近似线性,所以它们不会遇到像 Sigmoid 上面的情况。但是,采用 Tanh 作为激活函数时,从第一层到第四层的激活值却也会在训练过程中依次进入饱和区域。而采用 Softsign 的话,所有层都逐渐进入饱和区域,但这个过程会更慢一点。

在训练完成后,我们可以发现以 Tanh 作为激活函数,最终每层的激活值大多落在饱和区域和 0 附近;以 Softsign 作为激活函数,最终每层的激活值大多落在 (-0.6, -0.8) 和 (0.6, 0.8) 区间。

3. 梯度以及它们的传播

3.1. 损失函数

作者发现采用似然损失比用二次的均方误差要好,因为采用似然损失不容易陷入到平缓区域,不会让训练过程变得很慢。如下图所示,可以看到采用二次损失的损失函数有很多平缓区域。

3.2. Xavier 初始化

针对一个对称的激活函数,并且其在原点处的导数为 1,那么我们有:

根据以上定义,可以得到:

假设初始时我们位于线性区域,权重之间互相独立,并且输入的特征具有一样的方差 \(Var[x]\),第 \(i\) 层具有 \(n_i\) 个神经元,那么有:

可参考 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 对比进行分析。

在前向过程中,为了保持信息,让每一层都具有一样的方差,即:

那么我们可以得到:

同样,考虑梯度的反向传播,我们可以得到:

为了保证每一层梯度的方差一致,也即:

我们有:

若同时考虑到前向传播的反向传播的约束,我们想要:

对此,我们用下面的方法来初始化参数

其中,\(U\) 代表均匀分布,其方差为

\[\frac{(b-a)^2}{12} = \frac{2}{n_j+n_{j+1}}\]

正好符合我们的预期。

可以看到,在前向传播过程中,旧的初始化方法,越靠后的层激活值越容易陷入到 0 区域,而采用新的初始化方法后,每一层的激活值分布基本相同。

在反向传播过程中,旧的初始化方法,越靠前的层梯度值越容易陷入到 0 区域,而采用新的初始化方法后,每一层的梯度分布基本相同。

5. 实验结果

获取更多精彩,请关注「seniusen」!

Xavier——Understanding the difficulty of training deep feedforward neural networks的更多相关文章

  1. [Xavier] Understanding the difficulty of training deep feedforward neural networks

    目录 概 主要内容 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural netwo ...

  2. Understanding the difficulty of training deep feedforward neural networks

    本文作者为:Xavier Glorot与Yoshua Bengio. 本文干了点什么呢? 第一步:探索了不同的激活函数对网络的影响(包括:sigmoid函数,双曲正切函数和softsign y = x ...

  3. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  4. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

    Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  9. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

随机推荐

  1. 20155314 2016-2017-2 《Java程序设计》第9周学习总结

    20155314 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 了解JDBC架构 掌握JDBC架构 掌握反射与ClassLoader 了解自定义泛型和自定义 ...

  2. Longest Substring Without Repeating Characters[medium]

    Given a string, find the length of the longest substring without repeating characters. Examples: Giv ...

  3. Jmeter之集合点与关联

    在Jmeter中,实现类似于LoadRunner中集合点的方法是采用同步定时器(Synchronizing Timer),而实现类似于LoadRunner中关联的方法是采用正则表达式提取器. 一.集合 ...

  4. openstack的网络模式(转)

    单节点上虚拟机和虚拟机之间通信 直接同过linuxbridge转发数据,即可通信 虚拟机跨物理节点通信 利用交换机的包转发机制,在大二层网络中转发数据包 虚拟机跟外网通信 同样利用交换机转发,将数据包 ...

  5. Property Injection in Asp.Net Core (转载)

    问: I am trying to port an asp.net application to asp.net core. I have property injection (using ninj ...

  6. springboot activiti 整合项目框架源码 druid 数据库连接池 shiro 安全框架

    官网:www.fhadmin.org 工作流模块---------------------------------------------------------------------------- ...

  7. #leetcode刷题之路36-有效的数独

    判断一个 9x9 的数独是否有效.只需要根据以下规则,验证已经填入的数字是否有效即可.数字 1-9 在每一行只能出现一次.数字 1-9 在每一列只能出现一次.数字 1-9 在每一个以粗实线分隔的 3x ...

  8. sqli-labs学习(less-1-less-4)

    学习sqli-labs之前先介绍一些函数,以便于下面的payload看的懂 group_concat函数 将查询出来的多个结果连接成一个字符串结果,用于在一个回显显示多个结果 同理的还有 concat ...

  9. [Golang学习笔记] 02 命令源码文件

    源码文件的三种类型: 命令源文件:可以直接运行的程序,可以不编译而使用命令“go run”启动.执行. 库源码文件 测试源码文件 面试题:命令源码文件的用途是什么,怎样编写它? 典型回答: 命令源码文 ...

  10. winform 自定义控件:半透明Loading控件

    winform  自定义控件:半透明Loading控件 by wgscd date:2015-05-05 效果: using System;using System.Drawing;using Sys ...