题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

输入输出格式

输入格式:

一个整数,为N。

输出格式:

一个整数,为所求的答案。

输入输出样例

输入样例#1:

6
输出样例#1:

15

说明

对于60%的数据,0<N<=2^16

对于100%的数据,0<N<=2^32

Solution:

  本题数学。

  设$f(x)$表示范围内$gcd(i,j)=x$的数的个数,则$f(x)=\sum_\limits{i=1}^{i\leq n}{(gcd(i,n)=x)}\;=\;\sum_\limits{i=1}^{i\leq \frac{n}{x}}{x*(gcd(i,\frac{n}{x})=1)}\;=\;x*\varphi (\frac{n}{x})$。

  所以原式$=\sum_\limits{i|n}^{i\leq n}{i*\varphi (\frac{n}{i})}$。

  于是直接暴力根号枚举n的因子,然后暴力根号筛$\varphi$ 求解就好了,时间复杂度$O(n^{\frac{3}{4}})$(注意开long long,被坑惨了)。

代码:

/*Code by 520 -- 9.20*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n;
ll ans; ll phi(ll x){
ll ans=x;
for(ll i=;i*i<=x;i++)
if(x%i==) {
while(x%i==) x/=i;
ans=ans/i*(i-);
}
if(x>) ans=ans/x*(x-);
return ans;
} int main(){
cin>>n;
ll i=;
for(i=;i*i<n;i++)
if(n%i==) ans+=i*phi(n/i)+(n/i)*phi(i);
if(i*i==n) ans+=i*phi(i);
cout<<ans;
return ;
}

P2303 [SDOi2012]Longge的问题的更多相关文章

  1. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  2. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  3. luogu P2303 [SDOi2012]Longge的问题

    传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...

  4. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  5. 【洛谷题解】P2303 [SDOi2012]Longge的问题

    题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...

  6. P2303 [SDOI2012]Longge的问题 我傻QwQ

    莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  8. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

随机推荐

  1. Python中的注释

    1.1 注释的目的 通过用自己熟悉的语言,在程序中对某些代码进行标注说明,这就是注释的作用,能够大大增强程序的可读性. 1.2 注释的分类 1.2.1 单行注释 以#开头,#右边的所有东西当做说明,而 ...

  2. CentOS安装Zabbix Agent

    rpm -i http://repo.zabbix.com/zabbix/3.4/rhel/7/x86_64/zabbix-release-3.4-2.el7.noarch.rpm安装存储库 yum ...

  3. JAVA图书管理系统汇总共27个[转]

    java图书馆管理系统[优秀毕业设计论文+源码]http://down.51cto.com/data/68350java+sql server图书管理系统 http://down.51cto.com/ ...

  4. OpenCV颜色转换和皮肤检测

    本笔记重点记录OpenCV中的颜色转换和利用色彩空间的特性进行皮肤检测 颜色转换 实现原理 之所以要引入色调/饱和度/亮度的色彩空间概念,是因为人们喜欢凭直觉分辨各种颜色,而它与这种方式吻合.实际上, ...

  5. 《Pro SQL Server Internals, 2nd edition》的CHAPTER 1 Data Storage Internals中的Data Pages and Data Rows(翻译)

    数据页和数据行 数据库中的空间被划分为逻辑8KB的页面.这些页面是以0开始的连续编号,并且可以通过指定文件ID和页号来引用它们.页面编号都是连续的,这样当SQL Server增长数据库文件时,从文件中 ...

  6. Docker入门与实践之 Dockerfile 语法详解

    一.Dockerfile 概述 Dockerfile是docker程序的解释脚本文件,Dockerfile 是一条一条的指令,Docker程序将dockerfile中的一条条指令编译成Linux可执行 ...

  7. oracle安装出错/runInstaller

    http://blog.csdn.net/yabingshi_tech/article/details/48313955 http://www.cnblogs.com/lihaozy/archive/ ...

  8. Daily Scrum (2015/11/6)

    今晚除了玉钟焕的其他成员在一起开了个短会.讨论有关添加新功能以及一些BUG问题.由于时间原因,我们本想把动态爬取功能留到第二个迭代中,但是现在目前时间还够,我们便一起对这一功能的讨论和实现进行分析. ...

  9. Bag类课后作业

    20162316 Bag课后作业 下面小标题都是码云链接 实现代码 import java.util.Arrays; public class Bag implements BagInterface ...

  10. url传多值问题

    使用url传值的特点是操作简单,虽然安全性低,但依然广泛运用. url传数据绑定的值: <a href='Default.aspx?id=<%#Eval("ID")%& ...