题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

输入输出格式

输入格式:

一个整数,为N。

输出格式:

一个整数,为所求的答案。

输入输出样例

输入样例#1:

6
输出样例#1:

15

说明

对于60%的数据,0<N<=2^16

对于100%的数据,0<N<=2^32

Solution:

  本题数学。

  设$f(x)$表示范围内$gcd(i,j)=x$的数的个数,则$f(x)=\sum_\limits{i=1}^{i\leq n}{(gcd(i,n)=x)}\;=\;\sum_\limits{i=1}^{i\leq \frac{n}{x}}{x*(gcd(i,\frac{n}{x})=1)}\;=\;x*\varphi (\frac{n}{x})$。

  所以原式$=\sum_\limits{i|n}^{i\leq n}{i*\varphi (\frac{n}{i})}$。

  于是直接暴力根号枚举n的因子,然后暴力根号筛$\varphi$ 求解就好了,时间复杂度$O(n^{\frac{3}{4}})$(注意开long long,被坑惨了)。

代码:

/*Code by 520 -- 9.20*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n;
ll ans; ll phi(ll x){
ll ans=x;
for(ll i=;i*i<=x;i++)
if(x%i==) {
while(x%i==) x/=i;
ans=ans/i*(i-);
}
if(x>) ans=ans/x*(x-);
return ans;
} int main(){
cin>>n;
ll i=;
for(i=;i*i<n;i++)
if(n%i==) ans+=i*phi(n/i)+(n/i)*phi(i);
if(i*i==n) ans+=i*phi(i);
cout<<ans;
return ;
}

P2303 [SDOi2012]Longge的问题的更多相关文章

  1. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  2. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  3. luogu P2303 [SDOi2012]Longge的问题

    传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...

  4. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  5. 【洛谷题解】P2303 [SDOi2012]Longge的问题

    题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...

  6. P2303 [SDOI2012]Longge的问题 我傻QwQ

    莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  8. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

随机推荐

  1. Web开发框架趋势

    Node.js增长很快,已经冒尖了 ASP.NET MVC 发展平稳(平稳很重要) Spring MVC沾着Spring的光,渐渐超越了Struts 2 Struts作为一个整体(Struts 1 和 ...

  2. ROC曲线与AUC

    一.ROC曲线 1.简介 ROC曲线全称是"受试者工作特征曲线 "(Receiver Operating Characteristic curve),又称为感受性曲线(Sensit ...

  3. Qt-网易云音乐界面实现-5 收藏列表,播放列表实现 QListWidget QTableWidget

    先上目前完成的内容吧,发现后面越写越多.在看看点击量,心凉凉. 完成了左侧的导航列表,还有就是右下角的播放列表. //创建的歌单 my_Create_Music_List = new QListWid ...

  4. node安装和npm全局配置

    本文章环境 windows10 64位家庭版 Node10.15.3LTS 安装包下载 Node官网 安装node 点击安装文件, 一键安装, 注意安装位置和添加到环境变量(xx to PATH)选项 ...

  5. Linux常规命令总结

    Linux常规命令总结,仅供参考: 系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显 ...

  6. 005 -- Mysql数据库引擎特点分析

    常用的数据库引擎的特点: ISAM: ISAM是一个定义明确且历经时间考验的数据表格管理方法,它在设计之时就考虑到数据库查询次数要远大于更新次数.因此,ISAM执行读取操作的速度很快,而且不占用大量的 ...

  7. Datawhale MySQL 训练营 Task5

    数据导入导出 导入table http://www.runoob.com/mysql/mysql-database-import.html 导出table http://www.runoob.com/ ...

  8. 面向 Web 开发者的 Sublime Text 插件

    Package Control 在 Sublime Text 上大家都用 Package Control 来管理安装插件,所以它是我们要安装的第一个插件,安装方法见这里.关于 Package Cont ...

  9. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  10. DB2分页查询简单示例

    select * from ( select a.* ,rownumber() over(order by create_time desc) as rowid from ( select * fro ...