题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

输入输出格式

输入格式:

一个整数,为N。

输出格式:

一个整数,为所求的答案。

输入输出样例

输入样例#1:

6
输出样例#1:

15

说明

对于60%的数据,0<N<=2^16

对于100%的数据,0<N<=2^32

Solution:

  本题数学。

  设$f(x)$表示范围内$gcd(i,j)=x$的数的个数,则$f(x)=\sum_\limits{i=1}^{i\leq n}{(gcd(i,n)=x)}\;=\;\sum_\limits{i=1}^{i\leq \frac{n}{x}}{x*(gcd(i,\frac{n}{x})=1)}\;=\;x*\varphi (\frac{n}{x})$。

  所以原式$=\sum_\limits{i|n}^{i\leq n}{i*\varphi (\frac{n}{i})}$。

  于是直接暴力根号枚举n的因子,然后暴力根号筛$\varphi$ 求解就好了,时间复杂度$O(n^{\frac{3}{4}})$(注意开long long,被坑惨了)。

代码:

/*Code by 520 -- 9.20*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n;
ll ans; ll phi(ll x){
ll ans=x;
for(ll i=;i*i<=x;i++)
if(x%i==) {
while(x%i==) x/=i;
ans=ans/i*(i-);
}
if(x>) ans=ans/x*(x-);
return ans;
} int main(){
cin>>n;
ll i=;
for(i=;i*i<n;i++)
if(n%i==) ans+=i*phi(n/i)+(n/i)*phi(i);
if(i*i==n) ans+=i*phi(i);
cout<<ans;
return ;
}

P2303 [SDOi2012]Longge的问题的更多相关文章

  1. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  2. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  3. luogu P2303 [SDOi2012]Longge的问题

    传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...

  4. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  5. 【洛谷题解】P2303 [SDOi2012]Longge的问题

    题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...

  6. P2303 [SDOI2012]Longge的问题 我傻QwQ

    莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  8. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

随机推荐

  1. Linux之linux入门

    学习linux之前先了解一下操作系统: 操作系统的定义:         操作系统(英语:operating system,缩写作 OS)是管理计算机硬件与软件资源的计算机程序,同时也是计算机系统的内 ...

  2. SpringBoot之MongoTemplate的查询可以怎么耍

    学习一个新的数据库,一般怎么下手呢?基本的CURD没跑了,当可以熟练的增.删.改.查一个数据库时,可以说对这个数据库算是入门了,如果需要更进一步的话,就需要了解下数据库的特性,比如索引.事物.锁.分布 ...

  3. Kickstart Round G 2018

    第一次打codejam....惨的一比,才A1.5题,感觉自己最近状态渣到姥姥家了,赶紧练练 A 模拟,注意0的问题 #include <iostream> #include <cs ...

  4. v-if、v-show 指令

    HTML部分: <div id="app"> <button type="button" @click="flag=!flag&qu ...

  5. yocto-sumo源码解析(十): ProcessServer.idle_commands

    这一节开始介绍ProcessServer.idle_commands,前面我们知道ProcessServer.main就是不停调用idle_commands()以获取可用的套接字描述符或者是文件描述符 ...

  6. [Paper Reading] Image Captioning using Deep Neural Architectures (arXiv: 1801.05568v1)

    Main Contributions: A brief introduction about two different methods (retrieval based method and gen ...

  7. AI入门课程资源

    企业 kaggle https://www.kaggle.com/learn/overview Google   介绍 https://developers.google.cn/machine-lea ...

  8. 跨域Ajax -- jsonp和cors

    跨域Ajax - jsonp - cors 参考博客: http://www.cnblogs.com/wupeiqi/articles/5703697.html http://www.cnblogs. ...

  9. Python更新库

    查看系统里过期的python库,可以用pip命令 [root@vnode33 sim-enb-sgi]# pip list #列出所有安装的库 Package Version ------------ ...

  10. Thunder——Final发布

    视频: https://www.bilibili.com/video/av17008792/   视频播放截图及简要文字介绍: http://www.cnblogs.com/lick468/p/799 ...