Problem 1752 A^B mod C

Accept: 579    Submit: 2598
Time Limit: 1000 mSec    Memory Limit : 32768 KB

Problem Description

Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,B,C<2^63).

Input

There are multiply testcases. Each testcase, there is one line contains three integers A, B and C, separated by a single space.

Output

For each testcase, output an integer, denotes the result of A^B mod C.

Sample Input

3 2 4 2 10 1000

Sample Output

1 24

Source

FZU 2009 Summer Training IV--Number Theory

很多题目,平时提交是对的。但是比赛的时候,数据加强,数字范围变化就错了。
溢出......
 
这个题,两个知识点,很好的题目。
1. a^b%m;
2. a*b%m;
由于这道题,数字的大小是(1<=A,B,C<2^63).
一开始,我们都会想到用__int64 或者 long long
计算的方法也有多种,但是本质上是一样的。
整数的二进制拆分。
在计算的过程中会出现一些问题。
错误的代码:
 
  Source Code
RunID: 508246UserID: 987690183Submit time: -- ::52Language: Visual C++Length: Bytes.Result: Wrong Answer #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; unsigned __int64 mgml(unsigned __int64 a,unsigned __int64 n,unsigned __int64 m )
{
unsigned __int64 ans=;
a=a%m;
while(n)
{
if(n&)
{
ans=(ans*a)%m;//当数字很大的时候,ans*a就溢出了。
}
n=n>>;
a=(a*a)%m;//这边的也是一样的。
}
return ans;
} int main()
{
unsigned __int64 a,b,c;
while(scanf("%I64u%I64u%I64u",&a,&b,&c)>)
{
printf("%I64u\n",mgml(a,b,c));
}
return ;
}

因此,通过以前的方法就难以解决这个问题,这也是这道题好的地方了。

处理的方法,加一个a*b%m的函数,解决在错误代码里遇到的问题。

AC代码:

 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; typedef __int64 LL; LL pow1_sum(LL a,LL b,LL mod)
{
a=a%mod;
b=b%mod;
LL cur=;
while(b)
{
if(b&)
{
cur=cur+a;
if(cur>=mod) cur=cur-mod;
}
a=a<<;
if(a>=mod) a=a-mod;
b=b>>;
}
return cur;
}
LL pow_sum(LL a,LL b,LL mod) //a^b%mod
{
LL cur= ;
a=a%mod;
while(b)
{
if(b&)
{
cur=pow1_sum(cur,a,mod);
}
a=pow1_sum(a,a,mod);
b=b>>;
}
return cur;
}
void solve(LL a,LL b,LL mod)
{
LL result = pow_sum(a,b,mod);
printf("%I64d\n",result);
}
int main()
{
LL a,b,mod;
while(scanf("%I64d%I64d%I64d",&a,&b,&mod)>)
{
solve(a,b,mod);
}
return ;
}

这道题,没有很复杂的算法,但是又容易出错,很值得推荐

福州大学oj 1752 A^B mod C ===>数论的基本功。位运用。五星*****的更多相关文章

  1. [FOJ 1752] A^B mod C

    Problem 1752 A^B mod C Accept: 750    Submit: 3205Time Limit: 1000 mSec    Memory Limit : 32768 KB   ...

  2. 51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求 ...

  3. 51Nod1039 N^3 Mod P 数论 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1039.html 题目传送门 - 51Nod1039 题意 题解 这题我用求高次剩余的做法,要卡常数. ...

  4. 51Nod1038 X^A Mod P 数论 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1038.html 题目传送门 - 51Nod1038 题意 题解 在模质数意义下,求高次剩余,模板题. ...

  5. FZU 1650 1752 a^b mod c

    http://acm.fzu.edu.cn/problem.php?pid=1752 http://acm.fzu.edu.cn/problem.php?pid=1650 给跪了. 我的快速幂会越界. ...

  6. FZU 1752 A^B mod C(快速加、快速幂)

    题目链接: 传送门 A^B mod C Time Limit: 1000MS     Memory Limit: 65536K 思路 快速加和快速幂同时运用,在快速加的时候由于取模耗费不少时间TLE了 ...

  7. 中国剩余定理的应用:猪的安家 ->福州大学 OJ

                                                                     Problem 1402 猪的安家 Accept: 984    Su ...

  8. HDU 4389 X mod f(x)

    题意:求[A,B]内有多少个数,满足x % f(x) == 0. 解法:数位DP.转化为ans = solve(b) - solve(a - 1).设dp[i][sum][mod][r]表示长度为i, ...

  9. HDU - 4389 X mod f(x)(数位dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4389 题意 为[A,B] 区间内的数能刚好被其位数和整除的数有多少个. 分析 典型的数位dp...比赛时想不出状 ...

随机推荐

  1. JQuery Mobile - 为什么绑定事件后会被多次执行?

    JQuery Mobile 在绑定事件时候,发现会被多次执行,为什么啊? 原来,jquery click  不是替换原有的function ,而是接着添加,所以才会执行次数越来越多,怎么办才能按需实现 ...

  2. 782. Transform to Chessboard

    An N x N board contains only 0s and 1s. In each move, you can swap any 2 rows with each other, or an ...

  3. CRUD组件的高阶使用

    1.list页面自定列显示: class PermissionConfig(sites.AryaConfig):       def dabo(self, obj=None, is_header=Fa ...

  4. Queue-621. Task Scheduler

    Given a char array representing tasks CPU need to do. It contains capital letters A to Z where diffe ...

  5. linux parallel rsync 拷贝N多文件

    先来个对比图看一下, 左边图是普通 rsync 目录拷贝, 右边图是借助 parallel 工具并发起了多个 rsync centos6.5安装 parallel #!/bin/bash # Inst ...

  6. powerDesiner设计数据库的一些用法

    数据库的设计主要有以下几个步骤: 1:需求分析:根据业务需求分析出满足客户的需求,从而建立相应的数据库 2:概念设计:通过数据抽象,设计系统概念模型,一般为E-R模型:(entity-relation ...

  7. ubuntu14.0 安装 node v8.11.1(任意版本)

    由于众所周知的原因,通过node官网下载速度十分慢,我这里通过淘宝镜像安装 node8.11.1,其他版本同理. node版本淘宝镜像地址:https://npm.taobao.org/mirrors ...

  8. Pyplot绘图的格式

    字符 颜色 ‘b’ 蓝色,blue ‘g’ 绿色,green ‘r’ 红色,red ‘c’ 青色,cyan ‘m’ 品红,magenta ‘y’ 黄色,yellow ‘k’ 黑色,black ‘w’ ...

  9. iOS 代码混淆的简单使用

    1.工具下载  http://stevenygard.com/projects/class-dump/  选择dmg安装包 2.打开终端输入:open/usr/local/bin 3. 4.修改权限在 ...

  10. django框架--cookie/session

    目录 一.http协议无状态问题 二.会话跟踪技术--cookie 1.对cookie的理解 2.cookie的使用接口 3.cookie的属性 4.使用cookie的问题 三.会话跟踪技术--ses ...